Home > Publications database > Exhaustive Search of Ligand Binding Pathways via Volume-Based Metadynamics > print |
001 | 866016 | ||
005 | 20240625095119.0 | ||
024 | 7 | _ | |a 10.1021/acs.jpclett.9b01183 |2 doi |
024 | 7 | _ | |a 2128/23195 |2 Handle |
024 | 7 | _ | |a altmetric:62021665 |2 altmetric |
024 | 7 | _ | |a pmid:31188006 |2 pmid |
024 | 7 | _ | |a WOS:000472804700048 |2 WOS |
037 | _ | _ | |a FZJ-2019-05276 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Capelli, Riccardo |0 P:(DE-Juel1)174546 |b 0 |e Corresponding author |
245 | _ | _ | |a Exhaustive Search of Ligand Binding Pathways via Volume-Based Metadynamics |
260 | _ | _ | |a Washington, DC |c 2019 |b ACS |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1674540522_23238 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Determining the complete set of ligands’ binding–unbinding pathways is important for drug discovery and for rational interpretation of mutation data. Here we have developed a metadynamics-based technique that addresses this issue and allows estimating affinities in the presence of multiple escape pathways. Our approach is shown on a lysozyme T4 variant in complex with a benzene molecule. The calculated binding free energy is in agreement with experimental data. Remarkably, not only were we able to find all the previously identified ligand binding pathways, but also we identified three pathways previously not identified as such. These results were obtained at a small computational cost, making this approach valuable for practical applications, such as screening of small compound libraries. |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |f POF III |x 0 |
536 | _ | _ | |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907) |0 G:(EU-Grant)785907 |c 785907 |f H2020-SGA-FETFLAG-HBP-2017 |x 1 |
536 | _ | _ | |a HPC-aided design of drugs with improved kinetics of binding (jias5d_20181101) |0 G:(DE-Juel1)jias5d_20181101 |c jias5d_20181101 |f HPC-aided design of drugs with improved kinetics of binding |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Carloni, Paolo |0 P:(DE-Juel1)145614 |b 1 |
700 | 1 | _ | |a Parrinello, Michele |0 P:(DE-HGF)0 |b 2 |
773 | _ | _ | |a 10.1021/acs.jpclett.9b01183 |g Vol. 10, no. 12, p. 3495 - 3499 |0 PERI:(DE-600)2522838-9 |n 12 |p 3495 - 3499 |t The journal of physical chemistry letters |v 10 |y 2019 |x 1948-7185 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866016/files/1904.10726.pdf |y Published on 2019-06-03. Available in OpenAccess from 2020-06-03. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866016/files/Sphere.pdf |y Published on 2019-06-03. Available in OpenAccess from 2020-06-03. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866016/files/acs.jpclett.9b01183.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866016/files/1904.10726.pdf?subformat=pdfa |x pdfa |y Published on 2019-06-03. Available in OpenAccess from 2020-06-03. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866016/files/Sphere.pdf?subformat=pdfa |x pdfa |y Published on 2019-06-03. Available in OpenAccess from 2020-06-03. |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866016/files/acs.jpclett.9b01183.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:866016 |p openaire |p open_access |p driver |p VDB |p ec_fundedresources |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)174546 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145614 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v Theory, modelling and simulation |x 0 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a Embargoed OpenAccess |0 StatID:(DE-HGF)0530 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J PHYS CHEM LETT : 2017 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J PHYS CHEM LETT : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-5-20120330 |k IAS-5 |l Computational Biomedicine |x 0 |
920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-9-20140121 |k INM-9 |l Computational Biomedicine |x 2 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IAS-5-20120330 |
980 | _ | _ | |a I:(DE-82)080012_20140620 |
980 | _ | _ | |a I:(DE-Juel1)INM-9-20140121 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|