000866038 001__ 866038
000866038 005__ 20230217124235.0
000866038 0247_ $$2arXiv$$aarXiv:1907.11950
000866038 0247_ $$2doi$$a10.1103/PhysRevD.100.074510
000866038 0247_ $$2Handle$$a2128/23233
000866038 0247_ $$2WOS$$aWOS:000492369100005
000866038 0247_ $$2altmetric$$aaltmetric:64296287
000866038 037__ $$aFZJ-2019-05284
000866038 082__ $$a530
000866038 1001_ $$0P:(DE-HGF)0$$aGreen, Jeremy R.$$b0$$eCorresponding author
000866038 245__ $$aExcited-state effects in nucleon structure on the lattice using hybrid interpolators
000866038 260__ $$aMelville, NY$$bInst.812068$$c2019
000866038 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2019-10-24
000866038 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2019-10-01
000866038 3367_ $$2DRIVER$$aarticle
000866038 3367_ $$2DataCite$$aOutput Types/Journal article
000866038 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600177867_27952
000866038 3367_ $$2BibTeX$$aARTICLE
000866038 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866038 3367_ $$00$$2EndNote$$aJournal Article
000866038 520__ $$aIt would be very useful to find a way of reducing excited-state effects in lattice QCD calculations of nucleon structure that has a low computational cost. We explore the use of hybrid interpolators, which contain a nontrivial gluonic excitation, in a variational basis together with the standard interpolator with tuned smearing width. Using the clover discretization of the field strength tensor, a calculation using a fixed linear combination of standard and hybrid interpolators can be done using the same number of quark propagators as a standard calculation, making this a cost-effective option. We find that such an interpolator, optimized by solving a generalized eigenvalue problem, reduces excited-state contributions in two-point correlators. However, the effect in three-point correlators, which are needed for computing nucleon matrix elements, is mixed: for some matrix elements such as the tensor charge, excited-state effects are suppressed, whereas for others such as the axial charge, they are enhanced. The results illustrate that the variational method is not guaranteed to reduce the net contribution from excited states except in its asymptotic regime, and suggest that it may be important to use a large basis of interpolators capable of isolating all of the relevant low-lying states.
000866038 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000866038 536__ $$0G:(DE-Juel1)hmz37_20161101$$aThe Proton radius and other aspects of nucleon structure from Lattice QCD (hmz37_20161101)$$chmz37_20161101$$fThe Proton radius and other aspects of nucleon structure from Lattice QCD$$x1
000866038 542__ $$2Crossref$$i2019-10-24$$uhttps://creativecommons.org/licenses/by/4.0/
000866038 588__ $$aDataset connected to arXivarXiv
000866038 7001_ $$0P:(DE-HGF)0$$aEngelhardt, Michael$$b1
000866038 7001_ $$0P:(DE-Juel1)145643$$aHasan, Nesreen$$b2
000866038 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b3
000866038 7001_ $$0P:(DE-HGF)0$$aMeinel, Stefan$$b4
000866038 7001_ $$0P:(DE-HGF)0$$aNegele, John W.$$b5
000866038 7001_ $$0P:(DE-HGF)0$$aPochinsky, Andrew V.$$b6
000866038 7001_ $$0P:(DE-HGF)0$$aSyritsyn, Sergey N.$$b7
000866038 77318 $$2Crossref$$3journal-article$$a10.1103/physrevd.100.074510$$bAmerican Physical Society (APS)$$d2019-10-24$$n7$$p074510$$tPhysical Review D$$v100$$x2470-0010$$y2019
000866038 773__ $$0PERI:(DE-600)2844732-3$$a10.1103/PhysRevD.100.074510$$gVol. 100, no. 7, p. 074510$$n7$$p074510$$tPhysical review / D$$v100$$x2470-0010$$y2019
000866038 8564_ $$uhttps://juser.fz-juelich.de/record/866038/files/PhysRevD.100.074510.pdf$$yOpenAccess
000866038 8564_ $$uhttps://juser.fz-juelich.de/record/866038/files/PhysRevD.100.074510.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866038 909CO $$ooai:juser.fz-juelich.de:866038$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145643$$aForschungszentrum Jülich$$b2$$kFZJ
000866038 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich$$b3$$kFZJ
000866038 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000866038 9141_ $$y2019
000866038 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866038 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866038 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000866038 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV D : 2016
000866038 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866038 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866038 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866038 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866038 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866038 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866038 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866038 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866038 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866038 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000866038 920__ $$lyes
000866038 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000866038 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000866038 980__ $$ajournal
000866038 980__ $$aVDB
000866038 980__ $$aI:(DE-Juel1)JSC-20090406
000866038 980__ $$aI:(DE-Juel1)NIC-20090406
000866038 980__ $$aUNRESTRICTED
000866038 9801_ $$aFullTexts
000866038 999C5 $$1G. P. Lepage$$2Crossref$$oG. P. Lepage From Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics 1989$$tFrom Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics$$y1989
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(85)90297-4
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(90)90540-T
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1126-6708/2009/04/094
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.091.0135
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2013.04.063
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.93.114506
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.074505
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.074506
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.187.0276
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.074507
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1051/epjconf/201817506026
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3647217
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.139.0148
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.034506
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.85.054016
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.95.014510
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/JHEP08(2011)148
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.80.014002
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.91.094510
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.92.074504
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.94.054505
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2017.08.017
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1142/S0217751X17300113
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.99.054506
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.22323/1.334.0016
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.87.034505
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.90.099902
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.53.2317
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.72.074501
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0550-3213(85)90002-1
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0920-5632(90)90273-W
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.86.114509
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.physletb.2014.05.075
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevD.69.054501
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.201602
000866038 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.17815/jlsrf-5-171