Home > Publications database > Excited-state effects in nucleon structure on the lattice using hybrid interpolators > print |
001 | 866038 | ||
005 | 20230217124235.0 | ||
024 | 7 | _ | |a arXiv:1907.11950 |2 arXiv |
024 | 7 | _ | |a 10.1103/PhysRevD.100.074510 |2 doi |
024 | 7 | _ | |a 2128/23233 |2 Handle |
024 | 7 | _ | |a WOS:000492369100005 |2 WOS |
024 | 7 | _ | |a altmetric:64296287 |2 altmetric |
037 | _ | _ | |a FZJ-2019-05284 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Green, Jeremy R. |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
245 | _ | _ | |a Excited-state effects in nucleon structure on the lattice using hybrid interpolators |
260 | _ | _ | |a Melville, NY |c 2019 |b Inst.812068 |
264 | _ | 1 | |3 online |2 Crossref |b American Physical Society (APS) |c 2019-10-24 |
264 | _ | 1 | |3 print |2 Crossref |b American Physical Society (APS) |c 2019-10-01 |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1600177867_27952 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a It would be very useful to find a way of reducing excited-state effects in lattice QCD calculations of nucleon structure that has a low computational cost. We explore the use of hybrid interpolators, which contain a nontrivial gluonic excitation, in a variational basis together with the standard interpolator with tuned smearing width. Using the clover discretization of the field strength tensor, a calculation using a fixed linear combination of standard and hybrid interpolators can be done using the same number of quark propagators as a standard calculation, making this a cost-effective option. We find that such an interpolator, optimized by solving a generalized eigenvalue problem, reduces excited-state contributions in two-point correlators. However, the effect in three-point correlators, which are needed for computing nucleon matrix elements, is mixed: for some matrix elements such as the tensor charge, excited-state effects are suppressed, whereas for others such as the axial charge, they are enhanced. The results illustrate that the variational method is not guaranteed to reduce the net contribution from excited states except in its asymptotic regime, and suggest that it may be important to use a large basis of interpolators capable of isolating all of the relevant low-lying states. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |f POF III |x 0 |
536 | _ | _ | |a The Proton radius and other aspects of nucleon structure from Lattice QCD (hmz37_20161101) |0 G:(DE-Juel1)hmz37_20161101 |c hmz37_20161101 |f The Proton radius and other aspects of nucleon structure from Lattice QCD |x 1 |
542 | _ | _ | |i 2019-10-24 |2 Crossref |u https://creativecommons.org/licenses/by/4.0/ |
588 | _ | _ | |a Dataset connected to arXivarXiv |
700 | 1 | _ | |a Engelhardt, Michael |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Hasan, Nesreen |0 P:(DE-Juel1)145643 |b 2 |
700 | 1 | _ | |a Krieg, Stefan |0 P:(DE-Juel1)132171 |b 3 |
700 | 1 | _ | |a Meinel, Stefan |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Negele, John W. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Pochinsky, Andrew V. |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Syritsyn, Sergey N. |0 P:(DE-HGF)0 |b 7 |
773 | 1 | 8 | |a 10.1103/physrevd.100.074510 |b American Physical Society (APS) |d 2019-10-24 |n 7 |p 074510 |3 journal-article |2 Crossref |t Physical Review D |v 100 |y 2019 |x 2470-0010 |
773 | _ | _ | |a 10.1103/PhysRevD.100.074510 |g Vol. 100, no. 7, p. 074510 |0 PERI:(DE-600)2844732-3 |n 7 |p 074510 |t Physical review / D |v 100 |y 2019 |x 2470-0010 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866038/files/PhysRevD.100.074510.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/866038/files/PhysRevD.100.074510.pdf?subformat=pdfa |x pdfa |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:866038 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)145643 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)132171 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV D : 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
915 | _ | _ | |a SCOAP3 |0 StatID:(DE-HGF)0570 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)NIC-20090406 |k NIC |l John von Neumann - Institut für Computing |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-Juel1)NIC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |1 G. P. Lepage |y 1989 |2 Crossref |t From Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics |o G. P. Lepage From Actions to Answers: Proceedings of the 1989 Theoretical Advanced Study Institute in Elementary Particle Physics 1989 |
999 | C | 5 | |a 10.1016/0550-3213(85)90297-4 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(90)90540-T |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1088/1126-6708/2009/04/094 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.091.0135 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2013.04.063 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.93.114506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.94.074505 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.074506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.187.0276 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.90.074507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1051/epjconf/201817506026 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.3647217 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.139.0148 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.034506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.85.054016 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.95.014510 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1007/JHEP08(2011)148 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.80.014002 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.91.094510 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.92.074504 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.94.054505 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.nuclphysb.2017.08.017 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1142/S0217751X17300113 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.99.054506 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.22323/1.334.0016 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.87.034505 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.90.099902 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.53.2317 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.72.074501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0550-3213(85)90002-1 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/0920-5632(90)90273-W |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.86.114509 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1016/j.physletb.2014.05.075 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevD.69.054501 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.105.201602 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.17815/jlsrf-5-171 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|