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It would be very useful to find a way of reducing excited-state effects in lattice QCD calculations of

nucleon structure that has a low computational cost. We explore the use of hybrid interpolators, which

contain a nontrivial gluonic excitation, in a variational basis together with the standard interpolator with

tuned smearing width. Using the clover discretization of the field strength tensor, a calculation using a fixed

linear combination of standard and hybrid interpolators can be done using the same number of quark

propagators as a standard calculation, making this a cost-effective option. We find that such an interpolator,

optimized by solving a generalized eigenvalue problem, reduces excited-state contributions in two-point

correlators. However, the effect in three-point correlators, which are needed for computing nucleon matrix

elements, is mixed: for some matrix elements such as the tensor charge, excited-state effects are suppressed,

whereas for others such as the axial charge, they are enhanced. The results illustrate that the variational

method is not guaranteed to reduce the net contribution from excited states except in its asymptotic regime,

and suggest that it may be important to use a large basis of interpolators capable of isolating all of the

relevant low-lying states.
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I. INTRODUCTION

One of the most challenging sources of systematic

uncertainty faced by lattice QCD calculations of nucleon

structure is excited-state contamination: the failure to

isolate the ground-state nucleon from the tower of

higher-energy states to which the interpolating operator

can couple. Although the unwanted excited states can be

exponentially suppressed by Euclidean time evolution, this

is hindered by an exponentially decaying signal-to-noise

ratio [1] that makes it impractical to evolve long enough in

Euclidean time.

The variational method [2–4] provides a way of improv-

ing the interpolating operator such that the lowest-lying

excited states can be systematically removed. Variational

approaches have been used to study nucleon structure in

Refs. [5–9], which used bases of interpolators with different

smearing widths and different site-local spin structures;

Refs. [10–12], which used bases with the standard inter-

polator evolved by different Euclidean time intervals, i.e.,

the generalized pencil-of-function method [13,14]; and

Ref. [15], which used the distillation method to enable

the use of interpolators with a variety of local structures

including covariant derivatives. In these cases, the varia-

tional setup was more computationally expensive than a

standard calculation because of the need for additional

quark propagators with different smeared sources or (for

time-evolved operators) additional source-sink separations.
1

In this paper, we present a study of a variational setup

that requires the same number of quark propagators as a

standard calculation, for a fixed choice of optimized
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1
The comparison is more difficult when using the distillation

method, which uses timeslice sources rather than the point
sources used in standard calculations.
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interpolator. This is accomplished by supplementing the

standard interpolator with hybrid ones [16] that contain a

gluonic excitation.
2
In Ref. [16], it was found that the latter

have the next-largest overlaps onto the ground state, after

the standard interpolator, but overlap much more strongly

than the standard interpolator with certain high-lying

excited states. The use of hybrid interpolators presents

the possibility of an improvement over the standard

approach at low computational cost.

It should be stressed that this study, alongwith all previous

ones in the nucleon sector,
3
uses only local interpolating

operators, which are poor at isolating multiparticle states. In

practice, the true spectrum that includes Nπ- and Nππ-like

states is not identified, meaning that the calculation is not in a

regime where the variational method has been proven to

improve the isolation of the ground state. Therefore, the

question of whether one interpolator is an improvement over

another is an empirical one, to be decided by examining

excited-state contributions in estimators for a variety of

observables.

This paper is organized as follows. Section II discusses

our lattice setup, the basis of interpolating operators, and

two tuning runs. Results for two-point correlators are

discussed in Sec. III A, forward matrix elements are shown

in Sec. III B, and form factors are presented in Sec. III C.

Our conclusions are given in Sec. IV.

II. LATTICE SETUP

As this is an exploratory calculation, we use a single lattice

ensemble with a coarse lattice spacing at a heavier-than-

physical pion mass and a relatively small box size; its

parameters are summarized in Table I. This has 2þ 1 flavors

of tree-level improved Wilson-clover quarks coupled to the

gauge links via two levels of HEX smearing [18].

Aside from the interpolating operator, the methodology

used here for computing nucleon matrix elements and form

factors is unchanged from previous work such as Ref. [11];

the reader is referred to that earlier work for details. Our

focus is on seeing whether excited-state contamination

can be reduced, and therefore we use three relatively short

source-sink separations, T, ranging from 0.70 to 1.16 fm.

We use two methods for determining matrix elements:

the ratio method—for which the asymptotically leading

excited-state contributions decay as e−ΔET=2, where ΔE is

the energy gap to the lowest excited state—and the

summation method, for which they decay as Te−ΔET .
Given a set of N interpolating operators fχig, one would

like to find a linear combination χ ¼ viχi that has a reduced
coupling to excited states. The standard approach is to

compute a matrix of two-point correlators,

CijðtÞ ¼ hχiðtÞχ
†
jð0Þi; ð1Þ

and then solve a generalized eigenvalue problem (GEVP)

Cðt2Þv ¼ λCðt1Þv ð2Þ

for some choice of ðt1; t2Þ. It has been shown [4] that by

suitably increasing t1 and t2 to remove contributions from

higher excited states in the determination of v, one can

define improved estimators for the ground-state energy and

matrix elements, for which the leading excited-state effect

depends on the energy gap to state N þ 1 rather than the

second (i.e., first excited) state. However, it is known that

for light pion masses and large volumes, the number of

low-lying excited states with the quantum numbers of the

nucleon is large due to the presence of multiparticle (Nπ,

Nππ, etc.) states [19–26]. Removing the effects of these

states would require that the basis include at least one

operator for each state. In addition, it has been found in

meson spectroscopy calculations that nonlocal multipar-

ticle interpolators must be included in order to correctly

identify the multiparticle spectrum: see, e.g., Ref. [27]. For

nucleons, the need for nonlocal operators is also supported

by chiral perturbation theory, which predicts at leading

order that the ratio of couplings for single nucleon and

nucleon-pion states is the same for all local operators [21].

This defeats the diagonalization procedure of Eq. (2) such

that Nπ states cannot be removed.

The challenge of systematically removing all contribu-

tions from the lowest-lying excited states will be left to

future work. Instead, we hope to find an improved local

operator that can be used in existing software with minimal

modifications and with little additional computational cost.

Our standard operator is

χ1 ¼ ϵabcðũ
T
aCγ5Pþd̃bÞũc; ð3Þ

where Pþ ¼ ð1þ γ4Þ=2 is a positive parity (nonrelativistic)
projector and q̃ is a smeared quark field. When used in a

two-point or three-point correlator with a polarization

matrix that includes a factor of Pþ, the projector is applied

to all three quarks. This allows for computational cost

savings in the quark propagators used for constructing

correlators: only half of the propagator solves are required

[28]. Of the three possible site-local nucleon operators, χ1
is the only one that can be constructed using positive-

parity-projected quark fields (see e.g., Appendixes B and C

of Ref. [29]).

We also consider hybrid operators, introduced in

Ref. [16], which include an insertion of the chromomag-

netic field Bi ¼ −
1

2
ϵijkFjk and are interpreted as having a

nontrivial gluonic excitation. Using the clover discretiza-

tion of Fμν [30], no additional quark propagators are

needed for constructing two-point correlators using hybrid

operators. Two different nucleon operators exist that use

positive-parity-projected quark fields:

2
The resulting basis of interpolators is similar to the one called

B3 in Ref. [15].
3
Bilocal operators were used in Ref. [17], but that was a study

of only spectroscopy and not structure.
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χ2 ¼ ϵabc½ðBiũÞ
T
aCγjPþd̃b�γiγjũc

− ϵabc½ũ
T
aCγjPþðBid̃Þb�γiγjũc; ð4Þ

χ3 ¼ ϵabc½ðBiũÞ
T
aCγjPþd̃b�Pijũc

− ϵabc½ũ
T
aCγjPþðBid̃Þb�Pijũc; ð5Þ

where Pij ¼ δij −
1

3
γiγj. These differ in the spin of the three

quarks: for χ2 it is
1

2
and for χ3 it is

3

2
. In both cases, this is

combined with the chromomagnetic field to produce an

overall spin of 1

2
.

Our production strategy begins with two tuning runs

where only two-point correlators are computed. The first

uses only χ1 and serves to select the quark smearing

parameters. The second serves for determining the coef-

ficients vi of an optimized operator χopt ¼ v�i χi. These are

followed by a production run with higher statistics in which

both two-point and three-point correlators are computed.

The three-point correlators are computed using the standard

operator χ1 and the linear combination χopt, in both cases

keeping the same operator at the source and the sink. For

three-point correlators, using χopt at the source and the sink

requires a different sequential propagator than for χ1, but

the total number of propagators needed in each case is the

same. We chose not to compute all nine combinations of

source and sink interpolators in three-point correlators

because this would require nine times as many sequential

propagators as a standard calculation.

A. Tuning of quark smearing

We use Wuppertal smearing [31], q̃ ∝ ð1þ αHÞNq,
where H is the nearest-neighbor gauge-covariant hopping

matrix constructed using the same smeared links used in the

fermion action. The parameter α is fixed to 3.0, and N is

varied to produce different smearing widths. The smearing

radius is determined by taking a color field φðx⃗Þ with

support only at the origin and then defining a density from

the squared norm of the smeared field: ρðx⃗Þ ¼ jφ̃ðx⃗Þj2.
Finally, we take the root-mean-squared radius:

r2 ¼

P
x⃗jx⃗j

2ρðx⃗ÞP
x⃗ρðx⃗Þ

: ð6Þ

For the tuning run, we used N ∈ f20; 40; 70; 110; 160g,
which correspond roughly to r=a ∈ f3; 4; 5; 6; 7g.
Figure 1 shows the effective mass ameffðtÞ ¼ log

CðtÞ
CðtþaÞ

for each smearing width. For t ¼ 2a and 3a, we can see that
the minimum lies near N ¼ 40 and 70. Based on this, we

decided to use the same smearing parameter, N ¼ 45, that

was used in a previous calculation [11,32,33].

TABLE I. Parameters of the ensemble and measurements used in this work. The lattice spacing is taken from Ref. [18], where it is set

using the mass of the Ω baryon at the physical point. Nconf refers to the number of gauge configurations analyzed and Nmeas ¼
2 × Nconf × Nsrc is the number of measurements performed. The factor of 2 in Nmeas accounts for the use of forward- and backward-

propagating states.

Size β amud ams a [fm] amπ mπ [MeV] mπL T=a Nconf Nsrc Nmeas

243 × 48 3.31 −0.09530 −0.04 0.1163(4) 0.1499(7) 254(1) 3.6 f6; 8; 10g 600 48 57600

FIG. 1. Effective mass of the nucleon. The five open gray circles at each t show results from the low-statistics tuning of the quark

smearing: the number of smearing steps increases from left to right. Filled symbols are from the full-statistics run: the standard operator

(green circles), χopt chosen based on the second tuning run (orange squares), and the variationally optimized operator based on the full-

statistics run (blue diamonds).
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B. Tuning of variational operator

The hybrid operators are constructed using a chromo-

magnetic field made from smeared gauge links. We take

the smeared links to which the fermions couple in the

action and then apply additional three-dimensional stout

smearing
4
[34]: 20 steps with ρ ¼ 0.1. The traceless part

of the clover definition of the field strength tensor is used.

For the second tuning run, we computed the full 3 × 3

matrix of two-point correlators. Solving the GEVP yielded

the coefficients vi for χopt; we did this at the largest

available time separations before the noise became too

large. For our choice of operators, the correlator matrix is

real and thus vi are also real. Normalizing such that v1 ¼ 1,

we selected χopt ¼ χ1 − 4.4χ2 − 7.3χ3. The determination

of coefficients from the subsequent full-statistics run is

shown in Fig. 2 for a range of t1 and t2 in the GEVP. Our

selection based on the tuning run is consistent with the

values determined at large times in the full run.

III. RESULTS

A. Two-point correlators

The full 3 × 3 matrix of two-point correlators was

computed in the full-statistics run, allowing for a more

detailed analysis. We begin by determining the excited

energy levels using the variational method. Solving the

GEVP at ðt1; t2Þ ¼ ð3a; 5aÞ yields an eigenvector vn for

each state n. This allows us to define projected correlators

CnðtÞ ¼ v†nCðtÞvn and then compute their effective ener-

gies; these are shown in Fig. 3. The two excited energies

are nearly degenerate and lie in the range from 1 to

1.5 GeV above the ground-state nucleon; this is similar to

the hybrid states observed in Ref. [16]. However, we stress

that this should not be considered a reliable determination

of the spectrum, as many lower-lying excitations are

expected and cannot be identified using our small basis

of three operators.

The presence of residual excited-state effects in the

effective mass (Fig. 1) suggests that more than three states

are needed to describe the two-point correlators. We employ

the fit model

FIG. 2. Components of the generalized eigenvector vi, normal-

ized to v1. The GEVP was solved for t1=a ∈ ½1; 5� and

ðt2 − t1Þ=a ∈ ½1; 3�. The horizontal lines indicate the values used
in the optimized operator χopt ¼ viχi, determined from the lower-

statistics tuning run.

FIG. 3. Effective energies for the three GEVP-projected corre-

lators at zero momentum (in order of increasing energy: blue

diamonds, orange squares, and green circles) and energies from

the four-state fit (horizontal bands). The colors of the bands

correspond to the effective energy with which they are identified

in Sec. III A; the additional state has a magenta band. The

horizontal range of the bands indicates the time separations in the

two-point correlator matrix that are fitted.

FIG. 4. Overlap factors normalized to the ground state,

Zi;n=Zi;1. These are shown for the three operators χi and for

their linear combination χopt.
4
We have not studied the effect of varying this.
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CijðtÞ ¼
XNstates

n¼1

Zi;nZj;ne
−Ent; ð7Þ

with the energies ordered E1 < E2 < � � �. We obtained a

good fit to the range t=a ∈ ½3; 12� using Nstates ¼ 4, which

yielded χ2=dof ¼ 0.89 (p ¼ 0.68). The four energy levels

are shown in Fig. 3. States 3 and 4 are consistent with the

effective energies from the GEVP-projected correlators for

the two excited states with t=a ¼ 3. The additional energy

level, state 2, sits below the two excited states identified by

the GEVP.

This identification of states between the GEVP and the

four-state fit is also supported by Fig 4, which shows

the overlap factors normalized to the ground state,

FIG. 5. Effective energies of the nucleon at nonzero momentum. See the caption of Fig. 1. Note that χ1 and χopt were tuned at zero

momentum, whereas the full variational analysis is retuned at nonzero momentum.
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Zi;n=Zi;1. It also shows the normalized overlap factors for

the operator χopt, which are determined via Zopt;n ¼ viZi;n.

The fit results indicate that χ1 has a significant overlap with

state 4, which is eliminated in χopt. The overlap of χ1 with

state 3 is consistent with zero, and this is preserved in χopt
despite the large overlaps of χ2 and χ3 with state 3. The

operators show no significant difference in the relative

overlaps with states 1 and 2; because of this, the GEVP was

insensitive to state 2 and was unable to eliminate the

coupling of χopt to it.

Finally, we can compare effective energies produced

using different operators. In addition to χ1 and χopt, which

were tuned at zero momentum using reduced statistics, we

also perform a new variational analysis based on the full-

statistics run. In Fig. 1, there is no significant difference

between χopt and the new variational operator. Both of them

have smaller effective masses than χ1 at early times,

indicating a significant reduction in excited-state contribu-

tions. However, they also suffer from increased statistical

uncertainty. Figure 5 shows the same comparison at non-

zero momentum. In all cases, χopt shows smaller excited-

state effects than χ1. At the smallest values of t, the new

variational operator also shows an improvement over χopt,

and this effect grows with momentum. This is not surpris-

ing, as the new variational operator is tuned for each

momentum, whereas χopt was chosen at p⃗ ¼ 0.

B. Forward matrix elements

We have only computed two combinations of source and

sink interpolators in three-point correlators: those with the

same interpolator at the source and the sink, which is

chosen to be either χ1 or χopt. For comparing these two

setups, we start by considering observables computed from

isovector matrix elements at zero momentum: the axial,

FIG. 6. Isovector axial, tensor, and scalar charges (gA, gT , and gS) and isovector momentum fraction hxiu−d determined using the

standard interpolator χ1 (open symbols) and the linear combination of standard and hybrid interpolators χopt (filled symbols). Ratio-

method data are shown for source-sink separations T=a ¼ 6 (green diamonds), 8 (orange circles), and 10 (blue squares), and are plotted

versus the operator insertion time τ, shifted by half the source-sink separation. Summation-method (magenta triangles) data are based on

the discrete derivative of sums, ½SðT þ 2aÞ − SðTÞ�=ð2aÞ; the two points correspond to T=a ¼ 6 and 8.
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tensor, and scalar charges (gA, gT , and gS), and the average

momentum fraction hxiu−d.
Results are shown in the “plateau plots” of Fig. 6. The

behavior depends strongly on the observable. For gA, χopt
produces a much stronger dependence on the operator

insertion time, τ, indicating a significant enhancement of

excited-state contributions. The opposite is true for gT,
where excited-state effects appear to be significantly sup-

pressed when using χopt. The difference between the two

operators is relatively small for gS and hxiu−d. It is particu-
larly problematic that χopt, which appears to be an improved

operator based on the two-point correlator, produces signifi-

cantly enhanced excited-state effects in gA. In addition,

across all observables χopt produces consistently larger

statistical uncertainties.

We have also explored the use of simultaneous four-state

fits to two-point and three-point correlators. However, for

each operator O the corresponding fit model has ten
independent unknown matrix elements hn0jOjni. Since
we have computed three-point correlators with only two
combinations of source and sink interpolators, the fits are
unable to constrain most of the operator matrix elements.
This prevents the use of four-state fits to understand what
causes the differences between χ1 and χopt for estimating

matrix elements.

C. Form factors

The isovector form factors F1 and F2 of the electro-
magnetic current are shown in Fig. 7 and the form factors
GA and GP of the axial current are shown in Fig. 8. The

results are rather mixed. For F2 near a2Q2 ¼ 0.3 and for
F1, χopt produces a weaker dependence on the source-sink

separation than χ1, indicating the suppression of excited-
state contributions. However, the opposite is true for F2 at

lower Q2 and for GA. For GP, the two operators produce

similar excited-state effects, which are very large at lowQ2.
Chiral perturbation theory predicts this large excited-state
contribution [25] as a result of nucleon-pion states, which
the hybrid operators are unlikely to help remove.

FIG. 8. Isovector axial and induced pseudoscalar form factors,

GA and GP. See the caption of Fig. 7.

FIG. 7. Isovector Dirac and Pauli form factors, F1 and F2,

determined using the standard interpolator χ1 (open symbols) and

the linear combination of standard and hybrid interpolators χopt
(filled symbols). Ratio-method data are shown for source-sink

separations T=a ¼ 6 (green diamonds), 8 (orange circles), and 10

(blue squares). Summation-method (magenta triangles) data are

based on fitting a line to the three sums.
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IV. CONCLUSIONS

The use of a variational basis comprising a standard

interpolating operator and hybrid ones presents the pos-

sibility of reducing excited-state contamination in nucleon

structure calculations at low computational cost. In two-

point correlators, this is borne out, as seen in Figs. 1 and 5.

However, in nucleon structure observables that depend on

three-point correlators there is no consistent result. The

tensor charge shows significantly reduced excited-state

effects, whereas the axial charge shows increased effects.
5

Other observables show little change and for form factors

the result can depend on Q2. If one also takes into account

the increased statistical uncertainty, then the setup using

hybrid interpolators appears to be not worth pursuing

further in its current form.

Results from the four-state fit indicate that the variational

procedure succeeds at suppressing some excited states

while another lower-lying state is unaffected. The presence

of many relevant excited states suggests ways of under-

standing the results: one possibility is that for the axial

charge, the variational procedure spoils a partial cancella-

tion of contributions between two different excited states.

Since operator matrix elements do not play a role in the

GEVP, there is no guarantee that reducing the net con-

tribution from excited states in the two-point correlator will

do the same in three-point correlators.

Reliably improved results using the variational method

can only be obtained by being in the asymptotic regime of

Ref. [4]. This means that all low-lying excitations must be

identified, including multiparticle states, which in practice

require nonlocal interpolators. Doing so amounts to a

challenging computation; however, as this work has shown,

half-measures (such as using a small number of local

interpolators) do not consistently reduce excited-state

contamination in nucleon structure observables.
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