000866040 001__ 866040
000866040 005__ 20210130003248.0
000866040 0247_ $$2doi$$a10.1113/JP278636
000866040 0247_ $$2ISSN$$a0022-3751
000866040 0247_ $$2ISSN$$a1469-7793
000866040 0247_ $$2pmid$$apmid:31647123
000866040 0247_ $$2WOS$$aWOS:000495881100001
000866040 0247_ $$2altmetric$$aaltmetric:73119632
000866040 037__ $$aFZJ-2019-05286
000866040 082__ $$a610
000866040 1001_ $$00000-0002-0161-654X$$aVolz, Lukas$$b0$$eCorresponding author
000866040 245__ $$aModulation of I‐wave generating pathways by TBS: a model of plasticity induction
000866040 260__ $$aHoboken, NJ$$bWiley-Blackwell$$c2019
000866040 3367_ $$2DRIVER$$aarticle
000866040 3367_ $$2DataCite$$aOutput Types/Journal article
000866040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1576650059_4543
000866040 3367_ $$2BibTeX$$aARTICLE
000866040 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866040 3367_ $$00$$2EndNote$$aJournal Article
000866040 520__ $$aPlasticity‐induction following theta burst transcranial stimulation (TBS) varies considerably across subjects, and the underlying neurophysiological mechanisms remain poorly understood, representing a challenge for scientific and clinical applications. In human motor cortex (M1), recruitment of indirect waves (I‐waves) can be probed by the excess latency of motor‐evoked potentials elicited by transcranial magnetic stimulation with an anterior–posterior (AP) orientation over the latency of motor‐evoked potentials evoked by direct activation of corticospinal axons using lateromedial (LM) stimulation, referred to as the ‘AP‐LM latency’ difference. Importantly, AP‐LM latency has been shown to predict individual responses to TBS across subjects. We, therefore, hypothesized that the plastic changes in corticospinal excitability induced by TBS are the result, at least in part, of changes in excitability of these same I‐wave generating pathways. In 20 healthy subjects, we investigated whether intermittent TBS (iTBS) modulates I‐wave recruitment as reflected by changes in the AP‐LM latency. As expected, we found that AP‐LM latencies before iTBS were associated with iTBS‐induced excitability changes. A novel finding was that iTBS reduced AP‐LM latency, and that this reduction significantly correlated with changes in cortical excitability observed following iTBS: subjects with larger reductions in AP‐LM latencies featured larger increases in cortical excitability following iTBS. Our findings suggest that plasticity‐induction by iTBS may derive from the modulation of I‐wave generating pathways projecting onto M1, accounting for the predictive potential of I‐wave recruitment. The excitability of I‐wave generating pathways may serve a critical role in modulating motor cortical excitability and hence represent a promising target for novel repetitive transcranial magnetic stimulation protocols.
000866040 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000866040 588__ $$aDataset connected to CrossRef
000866040 7001_ $$0P:(DE-HGF)0$$aHamada, Masashi$$b1
000866040 7001_ $$0P:(DE-HGF)0$$aMichely, Jochen$$b2
000866040 7001_ $$0P:(DE-HGF)0$$aPool, Eva‐Maria$$b3
000866040 7001_ $$0P:(DE-Juel1)165785$$aNettekoven, Charlotte$$b4
000866040 7001_ $$0P:(DE-HGF)0$$aRothwell, John C.$$b5
000866040 7001_ $$0P:(DE-Juel1)161406$$aGrefkes‐Hermann, Christian$$b6
000866040 773__ $$0PERI:(DE-600)1475290-6$$a10.1113/JP278636$$gp. JP278636$$n24$$p5963-5971$$tThe journal of physiology$$v597$$x1469-7793$$y2019
000866040 8564_ $$uhttps://juser.fz-juelich.de/record/866040/files/Volz_et_al-2019-The_Journal_of_Physiology.pdf$$yRestricted
000866040 8564_ $$uhttps://juser.fz-juelich.de/record/866040/files/Volz_et_al-2019-The_Journal_of_Physiology.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866040 909CO $$ooai:juser.fz-juelich.de:866040$$pVDB
000866040 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-0161-654X$$aForschungszentrum Jülich$$b0$$kFZJ
000866040 9101_ $$0I:(DE-HGF)0$$60000-0002-0161-654X$$a INM-3$$b0
000866040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000866040 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b3
000866040 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165785$$aForschungszentrum Jülich$$b4$$kFZJ
000866040 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)165785$$a INM-3$$b4
000866040 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-1656-720X$$aForschungszentrum Jülich$$b6$$kFZJ
000866040 9101_ $$0I:(DE-HGF)0$$60000-0002-1656-720X$$a INM-3$$b6
000866040 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000866040 9141_ $$y2019
000866040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYSIOL-LONDON : 2017
000866040 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866040 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866040 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866040 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866040 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866040 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866040 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866040 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866040 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866040 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866040 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866040 920__ $$lyes
000866040 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000866040 980__ $$ajournal
000866040 980__ $$aVDB
000866040 980__ $$aI:(DE-Juel1)INM-3-20090406
000866040 980__ $$aUNRESTRICTED