001     866040
005     20210130003248.0
024 7 _ |a 10.1113/JP278636
|2 doi
024 7 _ |a 0022-3751
|2 ISSN
024 7 _ |a 1469-7793
|2 ISSN
024 7 _ |a pmid:31647123
|2 pmid
024 7 _ |a WOS:000495881100001
|2 WOS
024 7 _ |a altmetric:73119632
|2 altmetric
037 _ _ |a FZJ-2019-05286
082 _ _ |a 610
100 1 _ |a Volz, Lukas
|0 0000-0002-0161-654X
|b 0
|e Corresponding author
245 _ _ |a Modulation of I‐wave generating pathways by TBS: a model of plasticity induction
260 _ _ |a Hoboken, NJ
|c 2019
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1576650059_4543
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Plasticity‐induction following theta burst transcranial stimulation (TBS) varies considerably across subjects, and the underlying neurophysiological mechanisms remain poorly understood, representing a challenge for scientific and clinical applications. In human motor cortex (M1), recruitment of indirect waves (I‐waves) can be probed by the excess latency of motor‐evoked potentials elicited by transcranial magnetic stimulation with an anterior–posterior (AP) orientation over the latency of motor‐evoked potentials evoked by direct activation of corticospinal axons using lateromedial (LM) stimulation, referred to as the ‘AP‐LM latency’ difference. Importantly, AP‐LM latency has been shown to predict individual responses to TBS across subjects. We, therefore, hypothesized that the plastic changes in corticospinal excitability induced by TBS are the result, at least in part, of changes in excitability of these same I‐wave generating pathways. In 20 healthy subjects, we investigated whether intermittent TBS (iTBS) modulates I‐wave recruitment as reflected by changes in the AP‐LM latency. As expected, we found that AP‐LM latencies before iTBS were associated with iTBS‐induced excitability changes. A novel finding was that iTBS reduced AP‐LM latency, and that this reduction significantly correlated with changes in cortical excitability observed following iTBS: subjects with larger reductions in AP‐LM latencies featured larger increases in cortical excitability following iTBS. Our findings suggest that plasticity‐induction by iTBS may derive from the modulation of I‐wave generating pathways projecting onto M1, accounting for the predictive potential of I‐wave recruitment. The excitability of I‐wave generating pathways may serve a critical role in modulating motor cortical excitability and hence represent a promising target for novel repetitive transcranial magnetic stimulation protocols.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hamada, Masashi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Michely, Jochen
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Pool, Eva‐Maria
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nettekoven, Charlotte
|0 P:(DE-Juel1)165785
|b 4
700 1 _ |a Rothwell, John C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Grefkes‐Hermann, Christian
|0 P:(DE-Juel1)161406
|b 6
773 _ _ |a 10.1113/JP278636
|g p. JP278636
|0 PERI:(DE-600)1475290-6
|n 24
|p 5963-5971
|t The journal of physiology
|v 597
|y 2019
|x 1469-7793
856 4 _ |u https://juser.fz-juelich.de/record/866040/files/Volz_et_al-2019-The_Journal_of_Physiology.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866040/files/Volz_et_al-2019-The_Journal_of_Physiology.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866040
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0000-0002-0161-654X
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 0
|6 0000-0002-0161-654X
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)165785
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 4
|6 P:(DE-Juel1)165785
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 0000-0002-1656-720X
910 1 _ |a INM-3
|0 I:(DE-HGF)0
|b 6
|6 0000-0002-1656-720X
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYSIOL-LONDON : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21