000866049 001__ 866049
000866049 005__ 20210130003251.0
000866049 0247_ $$2doi$$a10.1021/acschembio.9b00476
000866049 0247_ $$2ISSN$$a1554-8929
000866049 0247_ $$2ISSN$$a1554-8937
000866049 0247_ $$2pmid$$apmid:31638770
000866049 0247_ $$2WOS$$aWOS:000504806100012
000866049 037__ $$aFZJ-2019-05295
000866049 082__ $$a540
000866049 1001_ $$0P:(DE-HGF)0$$aWienen-Schmidt, Barbara$$b0
000866049 245__ $$aSurprising Non-Additivity of Methyl-Groups in Drug-Kinase Interaction
000866049 260__ $$aWashington, DC$$bSoc.$$c2019
000866049 3367_ $$2DRIVER$$aarticle
000866049 3367_ $$2DataCite$$aOutput Types/Journal article
000866049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1577802286_13801
000866049 3367_ $$2BibTeX$$aARTICLE
000866049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866049 3367_ $$00$$2EndNote$$aJournal Article
000866049 520__ $$aDrug optimization is guided by biophysical methods with increasing popularity. In the context of lead structure modifications, the introduction of methyl groups is a simple but potentially powerful approach. Hence, it is crucial to systematically investigate the influence of ligand methylation on biophysical characteristics such as thermodynamics. Here, we investigate the influence of ligand methylation in different positions and combinations on the drug–kinase interaction. Binding modes and complex structures were analyzed using protein crystallography. Thermodynamic signatures were measured via isothermal titration calorimetry (ITC). An extensive computational analysis supported the understanding of the underlying mechanisms. We found that not only position but also stereochemistry of the methyl group has an influence on binding potency as well as the thermodynamic signature of ligand binding to the protein. Strikingly, the combination of single methyl groups does not lead to additive effects. In our case, the merger of two methyl groups in one ligand leads to an entirely new alternative ligand binding mode in the protein ligand complex. Moreover, the combination of the two methyl groups also resulted in a nonadditive thermodynamic profile of ligand binding. Molecular dynamics (MD) simulations revealed distinguished characteristic motions of the ligands in solution explaining the pronounced thermodynamic changes. The unexpected drastic change in protein ligand interaction highlights the importance of crystallographic control even for minor modifications such as the introduction of a methyl group. For an in-depth understanding of ligand binding behavior, MD simulations have shown to be a powerful tool.
000866049 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000866049 536__ $$0G:(DE-Juel1)hkf7_20170501$$aForschergruppe Gohlke (hkf7_20170501)$$chkf7_20170501$$fForschergruppe Gohlke$$x1
000866049 588__ $$aDataset connected to CrossRef
000866049 7001_ $$0P:(DE-HGF)0$$aSchmidt, Denis$$b1
000866049 7001_ $$0P:(DE-HGF)0$$aGerber, Hans-Dieter$$b2
000866049 7001_ $$0P:(DE-HGF)0$$aHeine, Andreas$$b3
000866049 7001_ $$0P:(DE-Juel1)172663$$aGohlke, Holger$$b4
000866049 7001_ $$0P:(DE-HGF)0$$aKlebe, Gerhard$$b5$$eCorresponding author
000866049 773__ $$0PERI:(DE-600)2221735-6$$a10.1021/acschembio.9b00476$$gp. acschembio.9b00476$$n12$$p2585-2594$$tACS chemical biology$$v14$$x1554-8937$$y2019
000866049 8564_ $$uhttps://juser.fz-juelich.de/record/866049/files/acschembio.9b00476.pdf$$yRestricted
000866049 8564_ $$uhttps://juser.fz-juelich.de/record/866049/files/acschembio.9b00476.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866049 909CO $$ooai:juser.fz-juelich.de:866049$$pVDB
000866049 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172663$$aForschungszentrum Jülich$$b4$$kFZJ
000866049 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000866049 9141_ $$y2019
000866049 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866049 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866049 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866049 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CHEM BIOL : 2017
000866049 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866049 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866049 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866049 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866049 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866049 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866049 920__ $$lyes
000866049 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000866049 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000866049 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x2
000866049 980__ $$ajournal
000866049 980__ $$aVDB
000866049 980__ $$aI:(DE-Juel1)JSC-20090406
000866049 980__ $$aI:(DE-Juel1)NIC-20090406
000866049 980__ $$aI:(DE-Juel1)ICS-6-20110106
000866049 980__ $$aUNRESTRICTED
000866049 981__ $$aI:(DE-Juel1)IBI-7-20200312