001     866049
005     20210130003251.0
024 7 _ |a 10.1021/acschembio.9b00476
|2 doi
024 7 _ |a 1554-8929
|2 ISSN
024 7 _ |a 1554-8937
|2 ISSN
024 7 _ |a pmid:31638770
|2 pmid
024 7 _ |a WOS:000504806100012
|2 WOS
037 _ _ |a FZJ-2019-05295
082 _ _ |a 540
100 1 _ |a Wienen-Schmidt, Barbara
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Surprising Non-Additivity of Methyl-Groups in Drug-Kinase Interaction
260 _ _ |a Washington, DC
|c 2019
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1577802286_13801
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drug optimization is guided by biophysical methods with increasing popularity. In the context of lead structure modifications, the introduction of methyl groups is a simple but potentially powerful approach. Hence, it is crucial to systematically investigate the influence of ligand methylation on biophysical characteristics such as thermodynamics. Here, we investigate the influence of ligand methylation in different positions and combinations on the drug–kinase interaction. Binding modes and complex structures were analyzed using protein crystallography. Thermodynamic signatures were measured via isothermal titration calorimetry (ITC). An extensive computational analysis supported the understanding of the underlying mechanisms. We found that not only position but also stereochemistry of the methyl group has an influence on binding potency as well as the thermodynamic signature of ligand binding to the protein. Strikingly, the combination of single methyl groups does not lead to additive effects. In our case, the merger of two methyl groups in one ligand leads to an entirely new alternative ligand binding mode in the protein ligand complex. Moreover, the combination of the two methyl groups also resulted in a nonadditive thermodynamic profile of ligand binding. Molecular dynamics (MD) simulations revealed distinguished characteristic motions of the ligands in solution explaining the pronounced thermodynamic changes. The unexpected drastic change in protein ligand interaction highlights the importance of crystallographic control even for minor modifications such as the introduction of a methyl group. For an in-depth understanding of ligand binding behavior, MD simulations have shown to be a powerful tool.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schmidt, Denis
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Gerber, Hans-Dieter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Heine, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 4
700 1 _ |a Klebe, Gerhard
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acschembio.9b00476
|g p. acschembio.9b00476
|0 PERI:(DE-600)2221735-6
|n 12
|p 2585-2594
|t ACS chemical biology
|v 14
|y 2019
|x 1554-8937
856 4 _ |u https://juser.fz-juelich.de/record/866049/files/acschembio.9b00476.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/866049/files/acschembio.9b00476.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866049
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CHEM BIOL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21