001     866061
005     20240625095120.0
024 7 _ |a 10.1172/jci.insight.123987
|2 doi
024 7 _ |a 2128/23197
|2 Handle
024 7 _ |a altmetric:59198561
|2 altmetric
024 7 _ |a pmid:30996132
|2 pmid
024 7 _ |a WOS:000465334200005
|2 WOS
037 _ _ |a FZJ-2019-05301
082 _ _ |a 610
100 1 _ |a Rehman, Michael
|0 P:(DE-HGF)0
|b 0
245 _ _ |a High-throughput screening discovers antifibrotic properties of haloperidol by hindering myofibroblast activation
260 _ _ |a Ann Arbor, Michigan
|c 2019
|b JCI Insight
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573141118_9194
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Fibrosis is a hallmark in the pathogenesis of various diseases, with very limited therapeutic solutions. A key event in the fibrotic process is the expression of contractile proteins, including α-smooth muscle actin (αSMA) by fibroblasts, which become myofibroblasts. Here, we report the results of a high-throughput screening of a library of approved drugs that led to the discovery of haloperidol, a common antipsychotic drug, as a potent inhibitor of myofibroblast activation. We show that haloperidol exerts its antifibrotic effect on primary murine and human fibroblasts by binding to sigma receptor 1, independent from the canonical transforming growth factor-β signaling pathway. Its mechanism of action involves the modulation of intracellular calcium, with moderate induction of endoplasmic reticulum stress response, which in turn abrogates Notch1 signaling and the consequent expression of its targets, including αSMA. Importantly, haloperidol also reduced the fibrotic burden in 3 different animal models of lung, cardiac, and tumor-associated fibrosis, thus supporting the repurposing of this drug for the treatment of fibrotic conditions.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Vodret, Simone
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Braga, Luca
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Guarnaccia, Corrado
|0 0000-0001-7013-0861
|b 3
700 1 _ |a Celsi, Fulvio
|0 0000-0002-9760-8463
|b 4
700 1 _ |a Rossetti, Giulia
|0 P:(DE-Juel1)145921
|b 5
700 1 _ |a Martinelli, Valentina
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Battini, Tiziana
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Long, Carlin
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Vukusic, Kristina
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kocijan, Tea
|0 0000-0003-0486-7747
|b 10
700 1 _ |a Collesi, Chiara
|0 0000-0003-3909-422X
|b 11
700 1 _ |a Ring, Nadja
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Skoko, Natasa
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Giacca, Mauro
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Del Sal, Giannino
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Confalonieri, Marco
|0 0000-0002-4791-768X
|b 16
700 1 _ |a Raspa, Marcello
|0 0000-0002-3437-2430
|b 17
700 1 _ |a Marcello, Alessandro
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Myers, Michael P.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Crovella, Sergio
|0 0000-0001-8493-1168
|b 20
700 1 _ |a Carloni, Paolo
|0 P:(DE-Juel1)145614
|b 21
700 1 _ |a Zacchigna, Serena
|0 0000-0001-6705-3076
|b 22
|e Corresponding author
773 _ _ |a 10.1172/jci.insight.123987
|g Vol. 4, no. 8, p. e123987
|0 PERI:(DE-600)2874757-4
|n 8
|p e123987
|t JCI insight
|v 4
|y 2019
|x 2379-3708
856 4 _ |u https://juser.fz-juelich.de/record/866061/files/123987.1-20190401132802-covered-253bed37ca4c1ab43d105aefdf7b5536.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866061/files/123987.1-20190401132802-covered-253bed37ca4c1ab43d105aefdf7b5536.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866061
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)145921
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)145614
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IAS-5-20120330
|k IAS-5
|l Computational Biomedicine
|x 0
920 1 _ |0 I:(DE-Juel1)INM-9-20140121
|k INM-9
|l Computational Biomedicine
|x 1
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-5-20120330
980 _ _ |a I:(DE-Juel1)INM-9-20140121
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21