000866062 001__ 866062
000866062 005__ 20240711085659.0
000866062 0247_ $$2doi$$a10.1007/s11666-019-00935-4
000866062 0247_ $$2ISSN$$a1059-9630
000866062 0247_ $$2ISSN$$a1544-1016
000866062 0247_ $$2Handle$$a2128/23247
000866062 0247_ $$2WOS$$aWOS:000492174500006
000866062 037__ $$aFZJ-2019-05302
000866062 082__ $$a670
000866062 1001_ $$0P:(DE-Juel1)159408$$aMarcano, D.$$b0
000866062 245__ $$aPS-PVD Processing of Single-Phase Lanthanum Tungstate Layers for Hydrogen-Related Applications
000866062 260__ $$aBoston, Mass.$$bSpringer$$c2019
000866062 3367_ $$2DRIVER$$aarticle
000866062 3367_ $$2DataCite$$aOutput Types/Journal article
000866062 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573203232_23090
000866062 3367_ $$2BibTeX$$aARTICLE
000866062 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866062 3367_ $$00$$2EndNote$$aJournal Article
000866062 520__ $$aThis work presents a systematic study of the lanthanum tungstate (LaWO) ceramic layers formation on porous metallic substrates as a function of the PS-PVD processing parameters including plasma characteristics, support type and temperature, as well as addition of O2 during the spraying. Through precise control of the PS-PVD parameters, a set of processing conditions were found that led to He gas-tight purely cubic LaWO layers with negligible secondary phase precipitations. Being dependent on process conditioning, the formation and evolution of the cubic La6−xWO12−δ (x = 0.3-0.6) as the main phase of functional importance and of the undesired secondary phases (La2O3 and La6W2O15) was strongly affected by the cation and oxygen stoichiometries. The rapid cooling of the feedstock at particle impact on the substrate led to the formation of highly La-saturated compositions which exhibited significant lattice expansion in comparison with conventionally processed LaWO and is considered beneficial in terms of material performance. And indeed, the H2 permeation performance of the PS-PVD processed LaWO ceramic layers shown earlier by our group was 0.4 ml/min∙cm2 at 825 °C for 60 µm thickness of the functional layer, the highest value reported for this type of proton conducting ceramics, so far.
000866062 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000866062 588__ $$aDataset connected to CrossRef
000866062 7001_ $$0P:(DE-Juel1)129617$$aIvanova, Mariya$$b1$$ufzj
000866062 7001_ $$0P:(DE-Juel1)129633$$aMauer, G.$$b2$$eCorresponding author
000866062 7001_ $$0P:(DE-Juel1)159368$$aSohn, Y. J.$$b3$$ufzj
000866062 7001_ $$0P:(DE-HGF)0$$aSchwedt, A.$$b4
000866062 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b5$$ufzj
000866062 7001_ $$0P:(DE-Juel1)129636$$aMenzler, N. H.$$b6$$ufzj
000866062 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b7$$ufzj
000866062 773__ $$0PERI:(DE-600)2047715-6$$a10.1007/s11666-019-00935-4$$n7$$p1554-1564$$tJournal of thermal spray technology$$v28 $$x1544-1016$$y2019
000866062 8564_ $$uhttps://juser.fz-juelich.de/record/866062/files/Marcano2019_Article_PS-PVDProcessingOfSingle-Phase.pdf$$yRestricted
000866062 8564_ $$uhttps://juser.fz-juelich.de/record/866062/files/LaWO_PostRefereeDraft.pdf$$yPublished on 2019-10-23. Available in OpenAccess from 2020-10-23.
000866062 8564_ $$uhttps://juser.fz-juelich.de/record/866062/files/LaWO_PostRefereeDraft.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-23. Available in OpenAccess from 2020-10-23.
000866062 8564_ $$uhttps://juser.fz-juelich.de/record/866062/files/Marcano2019_Article_PS-PVDProcessingOfSingle-Phase.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866062 909CO $$ooai:juser.fz-juelich.de:866062$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129617$$aForschungszentrum Jülich$$b1$$kFZJ
000866062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b2$$kFZJ
000866062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b3$$kFZJ
000866062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich$$b5$$kFZJ
000866062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b6$$kFZJ
000866062 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b7$$kFZJ
000866062 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000866062 9141_ $$y2019
000866062 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866062 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866062 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866062 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866062 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ THERM SPRAY TECHN : 2017
000866062 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866062 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866062 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866062 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866062 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866062 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866062 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866062 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866062 9801_ $$aFullTexts
000866062 980__ $$ajournal
000866062 980__ $$aVDB
000866062 980__ $$aUNRESTRICTED
000866062 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866062 981__ $$aI:(DE-Juel1)IMD-2-20101013