001     866062
005     20240711085659.0
024 7 _ |a 10.1007/s11666-019-00935-4
|2 doi
024 7 _ |a 1059-9630
|2 ISSN
024 7 _ |a 1544-1016
|2 ISSN
024 7 _ |a 2128/23247
|2 Handle
024 7 _ |a WOS:000492174500006
|2 WOS
037 _ _ |a FZJ-2019-05302
082 _ _ |a 670
100 1 _ |a Marcano, D.
|0 P:(DE-Juel1)159408
|b 0
245 _ _ |a PS-PVD Processing of Single-Phase Lanthanum Tungstate Layers for Hydrogen-Related Applications
260 _ _ |a Boston, Mass.
|c 2019
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573203232_23090
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work presents a systematic study of the lanthanum tungstate (LaWO) ceramic layers formation on porous metallic substrates as a function of the PS-PVD processing parameters including plasma characteristics, support type and temperature, as well as addition of O2 during the spraying. Through precise control of the PS-PVD parameters, a set of processing conditions were found that led to He gas-tight purely cubic LaWO layers with negligible secondary phase precipitations. Being dependent on process conditioning, the formation and evolution of the cubic La6−xWO12−δ (x = 0.3-0.6) as the main phase of functional importance and of the undesired secondary phases (La2O3 and La6W2O15) was strongly affected by the cation and oxygen stoichiometries. The rapid cooling of the feedstock at particle impact on the substrate led to the formation of highly La-saturated compositions which exhibited significant lattice expansion in comparison with conventionally processed LaWO and is considered beneficial in terms of material performance. And indeed, the H2 permeation performance of the PS-PVD processed LaWO ceramic layers shown earlier by our group was 0.4 ml/min∙cm2 at 825 °C for 60 µm thickness of the functional layer, the highest value reported for this type of proton conducting ceramics, so far.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ivanova, Mariya
|0 P:(DE-Juel1)129617
|b 1
|u fzj
700 1 _ |a Mauer, G.
|0 P:(DE-Juel1)129633
|b 2
|e Corresponding author
700 1 _ |a Sohn, Y. J.
|0 P:(DE-Juel1)159368
|b 3
|u fzj
700 1 _ |a Schwedt, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bram, M.
|0 P:(DE-Juel1)129591
|b 5
|u fzj
700 1 _ |a Menzler, N. H.
|0 P:(DE-Juel1)129636
|b 6
|u fzj
700 1 _ |a Vaßen, R.
|0 P:(DE-Juel1)129670
|b 7
|u fzj
773 _ _ |a 10.1007/s11666-019-00935-4
|0 PERI:(DE-600)2047715-6
|n 7
|p 1554-1564
|t Journal of thermal spray technology
|v 28
|y 2019
|x 1544-1016
856 4 _ |u https://juser.fz-juelich.de/record/866062/files/Marcano2019_Article_PS-PVDProcessingOfSingle-Phase.pdf
|y Restricted
856 4 _ |y Published on 2019-10-23. Available in OpenAccess from 2020-10-23.
|u https://juser.fz-juelich.de/record/866062/files/LaWO_PostRefereeDraft.pdf
856 4 _ |y Published on 2019-10-23. Available in OpenAccess from 2020-10-23.
|x pdfa
|u https://juser.fz-juelich.de/record/866062/files/LaWO_PostRefereeDraft.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866062/files/Marcano2019_Article_PS-PVDProcessingOfSingle-Phase.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:866062
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129617
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J THERM SPRAY TECHN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21