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Many-body corrected tight-binding Hamiltonians for an accurate quasiparticle description

of topological insulators of the Bi2Se3 family
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We generate many-body corrected tight-binding Hamiltonians for topological insulators of the Bi2Se3 family.
To this end, we use ab initio calculated parameters extracted from GW calculations, thus capturing many-body
exchange and correlation effects, in contrast to previous tight-binding models. We investigate the effect of
many-body renormalizations on the electronic structure of bulk and surface states of semi-infinite systems as
well as thin films of these materials. It is shown that the GW self-energy correction brings about profound
changes not only in the band-gap values but also in the band dispersion around the inverted gaps with respect to
standard density-functional theory (DFT). These changes substantially improve the agreement with experiment.
We discuss the strong renormalization effect as being a result of the characteristic overestimation of inverted gaps
by standard approximations of DFT (opposite to the underestimation of gaps in topologically trivial materials).
In particular, we analyze the consequences that these renormalizations have on the dispersions of the topological
surface states and on the surface resonances. For reference, the tight-binding Hamiltonians are provided in the
Supplemental Material [30].
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I. INTRODUCTION

Since the first publication [1] of the bulk and surface band
structures of Bi2Se3, Bi2Te3, Sb2Te3, and Sb2Se3 in 2009,
much has been learned about the electronic properties of
these materials from theoretical calculations. However, the
vast majority of first-principles calculations have relied, thus
far, on standard density functional theory (DFT). Whereas
DFT is an exact theory [2], approximations must be made
in practice, the most common being the local-density (LDA)
[3] or the generalized gradient (GGA) approximations to the
exchange-correlation functional within the Kohn-Sham (KS)
formalism [4]. It is well known that LDA and GGA miss
important many-body exchange and correlation effects, which
might have affected the results published so far. In fact, as we
will discuss in this paper, closer analysis reveals that several
results are at odds with experimental observations. Further-
more, comparison with LDA or GGA band structures might
have led to erroneous interpretation of experimental spectra.
From a theoretical point of view, the DFT-KS eigenstates are
the solutions of a Schrödinger equation for a fictitious non-
interacting system. The KS eigenvalues should therefore not
be interpreted as the excitation energies of the real interacting
system. In practice, this is nevertheless often done, and the
KS eigenvalue spectrum is interpreted as the band structure of
the real system. All DFT calculations in this paper have been
carried out with the LDA approximation. The corresponding
GGA results are very similar.

*Current affiliation: IEK5-Photovoltaik, Forschungszentrum
Jülich, 52425 Jülich, Germany.

To go beyond DFT, few works have characterized the
materials with the use of the quasiparticle many-body GW

approach [5], which contains many-body exchange and corre-
lation effects. Due to the high computational cost of the GW

method, most studies only focused on bulk properties [6–15].
Only two works have also addressed the question of how the
many-body effects would affect the surface states. The first [7]
employed a “scissors operator” that was made to reproduce
the gap opening seen in GW calculations of the bulk without
spin-orbit coupling (SOC). Then, this scissors operator was
applied to the films of Bi2Se3 and Bi2Te3 with up to five
quintuple layers (QLs) and finally the SOC was included as a
correction. The second work [16–18] presented explicit GW

calculations of slabs of Bi2Se3, Bi2Te3, and Sb2Te3 up to
six-QL thickness. The discussion was thus concentrated on the
two-dimensional (2D) limit. These works showed very good
agreement with spectroscopy measurements of the topolog-
ical surface state (TSS) and are, to date, the most accurate
calculations of this family of materials in the 2D limit. Such
calculations are a real computational challenge and going to
thicknesses larger than that order of magnitude (five to six
QLs) is extremely costly.

However, most spectroscopy measurements published in
the literature for this family of materials are made on single-
crystal samples or thick films and several publications [19,20]
discuss the surface resonances between the TSS and the bulk
continuum. In addition, since the bulk properties of these ma-
terials are often substantially affected by many-body effects
[8,13,15], the question arises as to how strongly the surface
states would be affected, in particular, in comparison to the
effects in the bulk continuum. To answer this question, two
types of systems are investigated in this paper, very thick
films and the semi-infinite limit. The systems are so large
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that they cannot be studied with DFT or the GW method
anymore. A way out is offered by the tight-binding (TB)
approach employing parameters obtained from DFT or GW .
We construct TB Hamiltonians based on Wannier functions
[21] for the description of the surface electronic structure
in a film geometry. This method is especially accurate for
materials that present a van der Waals gap in their lattice
structure and has often been used for this family of materials.
Applications include calculations of heterostructures [22],
topological invariants [23], topological phase transitions [24],
semi-infinite systems [1] or very thick slabs and their spin
texture [25], electrons dynamics [26], band bending at the
surfaces [27], nonstoichiometric alloys [28], etc. In almost
all calculations so far, the TB parameters have been obtained
from DFT calculations. In this paper, the corresponding pa-
rameters are deduced, instead, from GW calculations of the
bulk. In the following, we will use the notation GW -TB and
DFT-TB to refer to results obtained with a GW and DFT
parametrization, respectively. The present method should not
be confused with the so-called DFTB approach and its version
combined with GW [29]. These latter methods constitute
simplifications in the numerical realization of the DFT and
GW method using ideas of TB, which allow the treatment
of systems larger than what would be possible with standard
DFT or GW calculations. The method used in the present
paper differs from those approaches in that it employs stan-
dard DFT and GW calculations of a small system (normally
the bulk) without approximations, which can then be mapped
to very large supercells (normally a thick film) using TB
Hamiltonians. The GW -TB approximation has, thus, the same
computational burden as DFT-TB, and both can be used to
study equally large systems. GW -TB, of course, requires that a
GW calculation of the bulk material is feasible. For the present
family of materials, with five atoms in the unit cell, bulk GW

calculations (also including the spin-orbit interaction [11] in
both G and W ) are easily affordable. As we will show, the
GW -TB approximation offers then a relatively cheap method
to study large system sizes including many-body renormaliza-
tion effects.

For reference, we provide the bulk GW -TB Hamiltonians
in the Supplemental Material [30] both including and exclud-
ing lifetime effects, leading to non-Hermitian and Hermitian
Hamiltonians, respectively [31]. We analyze results of the four
binary materials Bi2Se3, Bi2Te3, Sb2Se3, and Sb2Te3, as well
as the ternary compound Bi2Te2Se. There is a growing interest
in the latter because it shows a much smaller bulk doping
level than its binary siblings. In practical applications, the
bulk doping level can have very important consequences on
the electron transport and dynamics [32,33].

References [6–15] highlighted the main changes caused by
the GW many-body corrections on the bulk band structures
when compared to DFT. DFT results often showed a very
pronounced valence-band maximum (VBM) or conduction-
band minimum (CBM) at an off-symmetry k point. We will
discuss in Fig. 2 that this is the result of a systematic ex-
aggeration of the band inversion in DFT calculations. As
a consequence, the DFT inverted band gaps of topological
insulators (TIs) tend to be overestimated, which might result
in an incorrect identification of trivial semiconductors as
TIs [34]. The combination of the DFT underestimation of

normal band gaps and its overestimation of inverted band
gaps results in very rich renormalization effects on the bands
that can have a significantly different dispersion in DFT
and GW (see, e.g., Fig. 2 of Ref. [9]). In particular, it
changes the fundamental band gap of Bi2Se3 from indirect
(DFT) to direct (GW ), in agreement with experiments (see
Sec. IV A).

All these deficiencies of the bulk DFT electronic structure
were corrected by the GW calculations reported in the cited
publications, discussed in more detail in Sec. II. In the present
paper, we want to go beyond the bulk description and inves-
tigate the effects that the many-body corrections have on the
surface electronic structure and the surface resonances. This
will provide a revised and more reliable theoretical description
of the TSS of these materials.

II. REVIEW OF PREVIOUS BULK RESULTS

Figures 1(a)–1(d) show the DFT-TB calculations of 100-
QL films of the topological insulators Bi2Se3, Bi2Te3, Sb2Te3,
and Bi2Te2Se. (In Sec. IV D, we discuss separately the special
case of Sb2Se3, the identification of which as a trivial insu-
lator has recently been debated.) The color scheme gives the
surface character of the respective states. More precisely, it
gives the projection of the states onto the Wannier functions
associated to the atoms of the topmost QL. Dark purple thus
refers to pure surface states, surface resonances appear in
darker blue (visible, for example, when the Rashba states
merge with the bulk continuum), and the light blue states
have a bulklike character. Some of the bulk features visible
in the band structures of Figs. 1(a)–1(d) have been shown in
Refs. [8,13,15] to be inconsistent with experiments.

(i) Whereas it is well known that DFT (in the LDA and
GGA approximations) tends to underestimate the normal gaps
of semiconductors, the inverted gaps of TIs have turned out
to be overestimated by DFT in the cases considered so far
[7,14]. Usually, both types of gaps are improved when the GW

approximation is used (schematically represented in Fig. 2).
In the case of band inversion, the bands are inverted locally,
i.e., at specific points in the Brillouin zone, whereas the bands
are uninverted elsewhere and the energy gaps are normal (or
trivial). This means that, within the same material, there can
be over- and underestimation of the gap by DFT at different k

points. It is easy to imagine that, in such a case, the dispersion
of a band along the path that connects two of these k points
must be inaccurate, and a simple rigid shift of the unoccupied
states cannot correct the band structure. An example will be
presented in Fig. 8.

(ii) DFT may wrongly identify trivial semiconductors as
TIs [34], as a result of the overestimated band inversion.

(iii) The critical points for topological phase transitions are,
in general, predicted inaccurately by DFT [35–37]. The phase
transitions can be caused by varying strain, alloying, variation
of the SOC strength, etc. Given that the predicted band-gap
value of the unperturbed material is far from experiment, it is
to be expected that the critical parameter (strain, etc.) needed
to close and (un)invert it will be over- or underestimated,
too. For example, the In concentration necessary to cause
a topological phase transition in the alloys (Bi1−xInx )2Se3
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FIG. 1. Band structure of 100-QL films of Bi2Se3, Bi2Te3, Sb2Te3, and Bi2Te2Se obtained with a tight-binding model based on DFT (a)–(d)
and with many-body effects at the GW level (e)–(l). The color map of panels (a)–(h) represents the degree of localization of the states on the
topmost QL. The color coding in panels (i)–(l) represents the in-plane spin polarization. A, B, and C label bulk features characteristic of DFT
calculations that were shown to be inconsistent with experimental measurements (see text). The Bloch momentum k‖ is given relative to the Ŵ̄

point of the surface Brillouin zone. Energies are aligned such that the Dirac point appears at 0 eV.

is predicted by DFT to be around 17% [35], instead of the
experimental value of ≈5% [37].

(iv) The band inversion in TIs is usually caused by a band
reordering due to the SOC. The avoided crossing of the bands
opens an inverted gap and gives rise in many cases to a
so-called M shape or camelback shape. For materials where
the band inversion is very “deep” (typically with stronger
SOC), there is a more pronounced M shape, whereas for other
materials a band inversion can occur without producing any
M shape [9]. As DFT overestimates the inverted gaps, it often
gives rise to exaggerated M shapes. In some cases, DFT thus
predicts a local minimum in the band dispersion (the valley of
the M shape) where there should be a maximum [7].

(v) This has a fundamental consequence in Bi2Se3 : Feature
A in Fig. 1(a) shows the absolute bulk VBM of Bi2Se3 as pre-
dicted by DFT at an off-symmetry k point, whereas at the Ŵ̄

point there is a minimum in the bulk states (light blue) due to
the presence of an M shape. However, based on angle-resolved
photoemission spectroscopy (ARPES) and GW calculations,
Ref. [8] showed that Bi2Se3 is a direct-gap semiconductor
with the VBM at the Ŵ point. For many years, in contrast,
the gap of Bi2Se3 had been believed to be indirect. This belief
resulted from a misinterpretation of ARPES measurements on
the basis of DFT results. (The M shape observed in ARPES
for photon energies corresponding to the bulk Ŵ point is not
a bulk feature but a 2D one [8,27,38]. We will discuss this
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FIG. 2. Band inversion caused by SOC as described by k · p

perturbation theory [1,7]. In the absence of an inverted gap (left), the
general trend observed for GW corrections is to increase the band
gap of semiconductors. In the case of an inverted gap (right), the
effect is opposite and the value of the inverted gap is usually reduced
by the GW correction. The last two panels illustrate the flattening or
disappearance of the camelback shape due to many-body effects.

in Sec. IV A and Fig. 3.) Previous tight-binding Hamiltonians
provided in the literature [39] do not predict the VBM at the
Ŵ point or the direct nature of the band gap and, instead,
display an M shape around the Ŵ point, in disagreement with
photoemission, optics, and transport experiments [15,27,40–
43].

(vi) In Ref. [15], the electronic structure of Sb2Te3 was
thoroughly investigated using different exchange-correlation
functionals and different sets of lattice parameters. The
conclusion was that an off-symmetry VBM [like the one
labeled C in Fig. 1(c)] significantly higher in energy than the
one at Ŵ̄ is not consistent with the experimental literature.
GW predicts a maximum of the valence band at the center
of the Brillouin zone. Depending on the lattice parameters
and which functional was used as a starting point for the GW

calculation, this maximum can be the true VBM or a local one.
However, the energy difference between the local maximum
and the VBM is very small, so that the two maxima can be
considered degenerate. This scenario favors that the Dirac
point (DP) of the TSS of Sb2Te3 lies above the bulk VBM.
There is experimental evidence [44–46] that this is in fact the
case.

(vii) Feature B in Fig. 1(b) represents the absolute CBM of
Bi2Te3. Reference [13] showed that the location of the CBM
shifted away from Ŵ̄ is at odds with ARPES measurements.
Instead, the experimental CBM of Bi2Te3 appeared along the
Ŵ̄ direction, in contrast to what is predicted by DFT. There

FIG. 3. (a) Bulk Brillouin zone of the materials of the
Bi2Se3 family. (b) DFT-LDA and (c) GW bulk bands of Bi2Se3 in the
vicinity of Ŵ̄ for the path including Ŵ (red, where the band inversion
takes place) and the path including Z (blue, no band inversion).

is a second minimum that is almost energetically degenerate
with the one at Ŵ̄, but never dropping as low as the one of
feature B.

III. METHODS

The GW calculations for the bulk systems were performed
with the same convergence parameters as the ones described
in Ref. [9] except that the k-point sampling employed here is
denser (8 × 8 × 8) in order to obtain well converged Wannier
interpolations [47] of the GW bands. We used the DFT
code FLEUR [48] and the GW code SPEX [49]. Both rely
on the all-electron full-potential linearized augmented-plane-
wave (FLAPW) formalism. The WANNIER90 library [21] was
employed for the disentanglement procedure in the Wannier
construction. The experimental lattice parameters were taken
from Refs. [50] (Bi2Se3), [51] (Bi2Te3 and Bi2Te2Se), and
[52] (Sb2Te3). Given the lack of experimental results for
rhombohedral Sb2Se3, we used the theoretically optimized
(relaxed) lattice structure from Ref. [53] (see Sec. IV D). As
mentioned above, with DFT we refer to the LDA approxi-
mation, but results based on GGA show the same behavior.
There is not much literature about the use of other functionals
(e.g., hybrids [54]) for this family of TIs, but the B3PW91
functional has been shown [55] to yield “GW -quality results”
for Bi2Se3 and Bi2Te3. Unpublished results for Bi2Se3 with
the HSE functional [56] are in good agreement with GW

when experimental lattice parameters are used. In contrast,
Park and Ryu [57] concluded that hybrid DFT calculations
are not superior to GGA for predicting the band structures of
this family of materials. However, in this case, the comparison
was made between GGA band gaps computed with the GGA-
relaxed lattice parameters and HSE06 band gaps using the
HSE06-relaxed structure. Since the band gap for this family
of materials is very sensitive to the lattice parameters [8],
the differences in the band gaps in [57] might arise from
the different lattice parameters and not from the different
functionals. Given the lack of systematic literature with hy-
brid functionals for topological insulators of this family, the
question of whether these functionals provide an alternative
to GW in terms of accuracy remains open.

For the GW calculations in this paper, the SOC was in-
cluded already at the level of the reference one-particle band
structure (the GSOCW SOCapproach from Refs. [11,58]). In this
way, the SOC effects are fully included in the Green function
G, the screened Coulomb potential W , and the self-energy
�. The calculations were carried out on the supercomputer
JURECA at the Jülich Supercomputing Centre [59].

In Sec. II, we have discussed the main features of the DFT
electronic structures that do not fully agree with experimental
observations and require the inclusion of many-body effects.
The discussion was mostly focused on the bulk band structure
but, in practice, to study topological insulators, one is also
interested in the topological surface states and their interplay
with the bulk continuum. As the surface states coexist and
interact with the bulk states, an accurate theoretical descrip-
tion should include many-body effects in very thick films.
Unfortunately, due to the high computational cost of GW ,
the direct calculation of very large supercells required for the
study of thick films, in particular, taking into account SOC, is
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currently not feasible. Therefore, we construct tight-binding
Hamiltonians for the slab geometry as described below. The
TB parameters are obtained from first-principles calculations
of the bulk (GW or DFT). For the semi-infinite calculations
discussed in Sec. IV E, we use the iterative Green-function
method [60,61] as implemented in the code WANNIERTOOLS

[62].
Wannier functions are linear combinations of the Bloch

eigenfunctions and are localized in space. They can be viewed
as Fourier transforms of the Bloch functions. Their centers
coincide in most cases with the ionic positions. The Wannier
functions thus provide a suitable set of functions to be used
in TB studies. In the conventional TB approach, pure atomic
orbitals are used as a basis set instead. For the extended bulk
states, Wannier functions constitute in general a more natural
and more accurate basis for TB Hamiltonians. Often, Wannier
functions are defined in such a way that they are maximally
spatially localized. For these compounds, however, we found
that already the projected Wannier functions, that are often
used as a “first guess” to start the maximal localization
procedure, are sufficiently localized to yield an interpolated
band structure as accurate as the one obtained from maximally
localized Wannier functions (Fig. 12 in Appendix A). Wannier
functions constructed in this way have the advantage that they
remain very close to pure atomic orbitals. We have found the
disentanglement procedure [63] to be necessary, however.

Apart from the construction of TB Hamiltonians, the
Wannier functions also provide an efficient way to obtain band
structures from calculations performed on a coarse k mesh.
This so-called Wannier interpolation technique will naturally
lead us to an explanation of how the TB Hamiltonians of this
paper are constructed. A formal description of the Wannier
interpolation can be found in Ref. [47] and also in Appendix A
of the present paper. The actual first-principles calculation is
carried out on a relatively coarse, uniform reciprocal-space
k mesh (8 × 8 × 8), where the quantity of interest, in this
case the Hamiltonian H (k), is calculated from the Bloch
eigenstates. A set of selected bands is then transformed into
Wannier functions via a Fourier transformation to real space.
The Hamiltonian H (R) is now expressed in real space in a
basis of localized Wannier functions. Thanks to the spatial
localization of the Wannier functions, the Hamiltonian matrix
elements in real space decay rapidly with |R|, which in-
vites truncation of long-range interactions. An inverse Fourier
transformation then provides the Hamiltonian matrix elements
at an arbitrary point q not necessarily contained in the original
k-point set. The so-obtained “interpolated” Hamiltonian gives
rise to physical and surprisingly accurate band structures that
are often practically indistinguishable from those obtained in
the explicit first-principles DFT or GW calculation (Fig. 13
in Appendix A). In the case of GW , Wannier interpolation
is often used to plot band structures, as it is computationally
demanding to evaluate the GW self-energy explicitly for
the many k points necessary to obtain a smooth band plot.
In the examples of this paper, the interpolated Hamiltonian
reproduces, upon diagonalization, the bulk GW band structure
of the topological insulators very accurately.

In the step between the two Fourier transformations de-
scribed above, the Hamiltonian is defined in real space and its
matrix elements represent the on-site energies and hoppings

between sites in the lattice. Given the spatial interpretation of
the matrix elements, one can construct a new Hamiltonian for
a system with different geometry by selecting the appropriate
matrix elements from the bulk. In particular, we can construct
slab Hamiltonians by “stacking” blocks of H (R) in the direc-
tion perpendicular to the surface. We also need to make zero
the hoppings that relate the atoms at the surface with their
neighbors that would exist in the bulk but not in the slab. The
method assumes that the surface does not suffer significant
changes when the bulk is “cut.” This approximation might
be too drastic for certain materials, for example, if a surface
structural reconstruction plays an important role. However, in
the case of the topological insulators of the Bi2Se3 family, the
van der Waals gap between QLs is a very natural cleavage
plane, and this approximation gives excellent results.

IV. RESULTS

Figures 1(e)–1(h) show the GW -TB band structures of 100-
QL films of the four compounds, analogous to Figs. 1(a)–1(d).
(A version of this figure with a much larger energy range can
be found in Fig. 14 of Appendix B.) In the top panels of Fig. 1
the color coding refers to the localization of the states on the
surface. In the bottom panels [(i)–(l)], the color coding shows
the degree of in-plane spin polarization, with red and green for
opposite spin directions (white indicates no spin polarization).
Not only are the TSSs clearly recognizable but also the Rashba
states in the valence band. Whereas the spin polarization
decreases very abruptly when the surface states merge into
the bulk states, induced spin polarization can be found in bulk
states in the vicinity of the points where the surface states
disappear into the bulk. This is visible, for example, for the
lower Dirac cone (DC) of Bi2Se3 in Fig. 1(i) and of Sb2Te3 in
Fig. 1(k), or for the Rashba states [especially around Ŵ̄ at
≈ −0.6 eV for Bi2Te3 and Bi2Te2Se in Figs. 1(j) and 1(l)].
By comparison with Figs. 1(a)–1(d), it becomes obvious that
the GW -TB approximation has corrected those DFT-TB bulk
features (light blue) that were listed in Sec. II as inconsistent
with the experimental observations. And the correction has
strongly affected the surface states (dark purple).

In Appendix B, we provide all the technical details of the
Hamiltonians used for these calculations. These Hamiltonians
have already been used for analyzing the ultrafast electron
dynamics [26] and the photogalvanic effect spectra [64] of the
present TIs, as well as understanding the topological phase
transition in (Bi1−xInx )2Se3 alloys [37].

The most important changes in the surface states brought
about by the GW renormalization are discussed in the follow-
ing. Comparison with photoemission experiments from the
literature is shown when possible.

A. Lower Dirac cone of Bi2Se3

The discovery of the direct nature of the band gap of bulk
Bi2Se3 [7–9,65] changed our understanding of its electronic
structure. With first-principles methods, this can only be cor-
rectly described with state-of-the-art theoretical techniques,
beyond standard DFT, like GW calculations [7–9] or DFT
with hybrid functionals [55,56]. The first experimental evi-
dence of the direct nature of the band gap was provided by
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ARPES measurements [8,65]. These experimental measure-
ments indicated not only a direct band gap but also that the
Dirac point lies very close to the bulk VBM. In addition, the
GW calculations showed that both the bulk valence and con-
duction bands are parabolic [see light blue states in Fig. 1(e)]
and, respectively, with maximum and minimum at the Ŵ

point.
It is unfortunate that these crucial results went relatively

unnoticed in the following years. The reason for this is the
common understanding of the camelback shape observed in
photoemission spectra of Bi2Se3 to originate from the inver-
sion of the gap around the Ŵ point. However, this is a mis-
conception, and the seeming agreement with DFT results has
reinforced it. Let us try to understand this with the schematic
representation of the bands in Fig. 3. The mechanism of how
an inverted band gap might be related to a camelback-shaped
valence band was very intuitively shown in Ref. [7] using
k · p perturbation theory. But an inverted gap can also exist
without a camelback shape [7,9], as is shown in the last panel
of Fig. 2. And conversely, a band can present a dispersion
that resembles a camelback shape, without it being related
to an inverted gap (the avoided crossing of an occupied
and an unoccupied band). We will see in the following that
this is the case of the experimentally observed camelback
shape of Bi2Se3 (i.e., it is not related to the inverted gap):
Close to the Ŵ point, many-body calculations [red bands in
Fig. 3(c)], photon-energy dependent ARPES studies, as well
as transport and optical measurements [40–43,67] all agree
on a direct gap and parabolic valence and conduction band
(no camelback shape). Close to the Z point of the Brillouin
zone [see Fig. 3(a)], where Bi2Se3 does not present an inverted
band gap [68], the band has indeed a dispersion that resembles
an M or a camelback shape [light blue valence band in
Figs. 3(b) and 3(c)]. On this point, all measurements and cal-
culations agree. But why does one observe a camelback shape
close to Ŵ in many ARPES measurements of Bi2Se3 when
the most accurate bulk calculations indicate that there should
not be one? The camelback shape observed in the ARPES
spectra for photon energies corresponding to Ŵ is not a bulk
feature. It has been shown [8,27,38] to be a nondispersive
2D feature, which causes a resonant enhancement of the
photoemission intensity of the camelback-shaped state of the
bulk near the Z point. This 2D state could originate [27] from
the quantization of the valence-band states in a potential well
formed by the band bending of the bands at the surface [69].
The camelback shape is, however, still often attributed to the
bulk band inversion given the presence of a camelback shape
close to Ŵ in DFT results [red in Fig. 3(b)], whereas the
alternative interpretation provided by GW results is overall
more consistent with the experimental observations.

The parabolic bands predicted by GW invite us to compute
the effective masses and compare to magneto-optic exper-
iments. The experimental effective masses are 0.14m0 for
electrons and 0.18m0 for holes [41], which compare very well
with the values predicted by GW (≈0.15m0 for electrons and
≈0.21m0 for holes). In addition, the experiments have found
that the electron-hole asymmetry in Bi2Se3 is very small
[41,43]. The electron-hole asymmetry can be characterized by
the D2 parameter in k · p Hamiltonians of the form proposed

in Ref. [1]. Experimentally, it is found to be approximately
3 eV Å2. The value given by GW (6 eV Å2) is twice that
value, but it is much smaller and closer to the experiment
than the values reported from DFT (19.6, 26.3, and 30.4; see
Refs. [1,70] and references therein). In summary, the parame-
ters of the k · p Hamiltonian [1] that approximate best the GW

bands are the following (numbers in brackets are values from
magneto-optics experiments [41]): 2M = 210 meV (200 ±
5), A1 = 2110 meV Å, A2 = 3103 meVÅ (3100 ± 100),
B1 = 98 meVÅ2, B2 = 23 864 meV Å2 (22 500 ± 1000),
C = −3meV, D1 = 149 meV Å2, and D2 = 5992 meV Å2

(3000).
With respect to the value of the bulk band gap of Bi2Se3,

a large range of values has been given in the literature.
The ARPES community reports most often band gaps close
to 300 meV, with some values close to 200. Some of the
differences might arise from changes in the lattice structure of
the samples. Nechaev et al. [8] showed that small differences
in the lattice parameters used in the GW calculations can
change the direct band gap of Bi2Se3 from 190 to 340 meV.
The range of values of GW band gaps is thus similar to the
range provided by ARPES. In the calculation of the present
paper, the bulk band gap is 210 meV, well within the range of
most reported experimental values. In the case of the ARPES
measurements, the band gap depends in addition on what is
interpreted as the bulk VBM. Some works use the “valley” or
the “humps” of the camelback shape as VBM (although, as
discussed above, the camelback is not related to the inverted
gap of Bi2Se3). For example, Lou et al. [71] position the VBM
in their spectra in such a way that the band-gap value ends up
above 400 meV, significantly larger than the usually reported
range [72]. The ARPES works that support a direct nature of
the gap place the VBM very slightly below the Dirac cone
and report the smallest values, around 200 meV (see, e.g.,
[73]). Therefore, the particular positioning of the VBM in the
spectra strongly contributes to the ambiguities in the band-gap
values.

On the other hand, the optical studies [41–43,67,74–76]
report overall smaller band gaps, always closer to 200 meV.
Some difference between the optical gap and the quasiparticle
gap given by ARPES is expected. In optical experiments, there
is a significant population of electrons in the conduction band
and holes in the valence band. The attractive Coulomb interac-
tion between electrons and holes can give rise to the formation
of excitons, the binding energy of which effectively lowers
the optical gap with respect to the fundamental band gap.
The latter, on the other hand, is measured in photoemission
experiments, where electrons are not excited to conduction
bands but emitted from the sample, in which case excitons
play a less important role. However, in the case of Bi2Se3 the
difference in the band gaps cannot be fully attributed to
excitonic effects: Most ARPES works report an indirect gap
(since they place the VBM at the humps of the M shape),
whereas the optical measurements insist on the direct nature of
the gap and the parabolic bands (no M shape). Therefore, both
types of measured band gaps cannot be directly compared to
draw conclusions about excitonic effects. From a theoretical
point of view, the GW band gaps should be compared to the
ones measured in photoemission spectroscopy. The optical
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FIG. 4. (a) The photon-energy dependent ARPES spectra are reproduced with permission from Chiatti et al. [66]. The shaded areas in
panels (b) and (c) above 0 eV correspond to energies above the experimental Fermi energy. The energy scale in the two theoretical panels has
been shifted so that the energy of the Dirac point agrees with the experimental one.

gaps, on the other hand, require a different theoretical method.
They can be deduced from the solution of the Bethe-Salpeter
equation [77].

We now discuss how all the changes in the bulk dispersion,
especially the parabolic bands, affect the dispersion of the
surface states. A comparison of the theoretical spectra (DFT-
TB and GW -TB) with ARPES for different photon energies is
shown in Fig. 4. The lower DC obtained from DFT-TB is dis-
tinctly separate from the bulk valence states and has a very flat
dispersion [panel (c)]. This form is consistent with previous
LDA calculations (e.g., Refs. [16,78]) but clearly disagrees
with what is observed in ARPES measurements [panel (a)].
A slightly more dispersive lower DC has been reported in the
literature for a GGA functional instead of LDA, but the bulk
camelback shape basically remains unchanged. The situation
changes when many-body effects through the GW self-energy
are included [panel (b)]. We see then that the direct nature of
the band gap is predicted and, as a consequence, the lower
DC strongly resonates with the bulk states. The dispersion
of these resonant states is in excellent agreement with the
photoemission spectra. In the case of ultrathin films, such as
those studied in Refs. [7,16], the lack of a bulk continuum
allows for the lower DC to be energetically separate from the
valence-band quantum wells, preserving a purer 2D character.
The surface resonance also affects the spin polarization, which
appears significantly reduced for the lower DC [see Fig. 1(i)].
It decays rapidly as the TSS merges into the bulk valence
band to values lower than 5% in the resonance region. The
value increases to approximately 20% when the film is thinned
down to ten QLs as a result of the partial decoupling of bulk
and surface states in the ultrathin limit. The spin polarization
of the upper DC, in contrast, reaches values of 70%. This
result explains the much lower spin polarization of the lower
DC observed in spin-integrated ARPES [79] and circular
dichroic [80] ARPES, and it is consistent with the fact that the
spin polarization of the lower DC is larger for six QLs than for
single-crystal samples [79]. In the conduction band, surface
resonances with low spin polarization are also observed when
the upper DC merges with the bulk continuum.

The calculated energetic position of the Dirac point with
respect to the bulk VBM can range between 3 meV (present
calculation) and 35 meV, depending on the chosen lattice
parameters, being in all cases much closer to the bulk valence

band than to the middle of the band gap, the latter of which
is sometimes deduced from DFT calculations [1,81]. This is
consistent with the fact that scanning tunneling spectroscopy
(STS) results show clear electronlike discrete Landau lev-
els, but almost no holelike Landau levels [73]. The energy
difference between the Dirac point and the bulk CBM is
thus 207 meV in the present GW calculation. This is in
much better agreement with experiments than the prediction
by DFT (330 meV), which is almost twice as large as the
experimental value (170–190 meV extracted from ARPES
[65,82] or 184 meV from STS [83]).

The inclusion of many-body effects can thus explain sev-
eral apparent disagreements between photoemission, optical,
and transport measurements, which become consistent when
interpreted on the basis of the GW results.

B. Warping of the upper Dirac cone of Bi2Te3

Whereas the DC of Bi2Se3 is very isotropic, the one of
Bi2Te3 is subject to a strong warping due to the presence of the
bulk states (see also Fig. 15 in Appendix B). The warping of
the DC results in constant energy cuts having shapes different
from a circle, for example, a hexagon or a snowflake [84].
The warping can also be inferred from the asymmetry of
the DC in the Ŵ̄-K̄ and Ŵ̄-M̄ directions. In Fig. 5 we show
these two directions compared to an ARPES spectrum from
Ref. [13]. It is well known that the warping of the upper DC
of Bi2Te3 is caused by the bulk off-symmetry CBM in the
Ŵ̄-M̄ direction, indicated as B in Fig. 1(b). This bulk minimum
appears too low in DFT calculations and, therefore, the DC
[white in Fig. 5(b)] deviates too much from the experimental
dispersion. The correct experimental dispersion of the DC
is recovered when the calculations are performed with GW

[white in Fig. 5(a)]. A similar improvement was reported
in Ref. [17] for an ultrathin film of six QLs. The absolute
VBM and the local CBM in the Ŵ̄-M̄ direction [Fig. 1(f)] are
likely responsible for the onset of direct interband transitions
observed in optical spectroscopy and discussed extensively in
Ref. [42]. We also find excellent agreement between our cal-
culated GW quasiparticle energies and experiment for states
above the Fermi energy, namely, the TSS [26] and the two
spin-polarized surface resonances [85] as measured in time-
resolved ARPES (trARPES).
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FIG. 5. Dirac cone (white) of a 100-QL film of Bi2Te3 obtained from (a) GW -TB and (b) DFT-TB calculations superposed on an ARPES
spectrum. The ARPES measurements are adapted with permission from Michiardi et al. [13] (copyrighted by the American Physical Society)
and are shown in panel (c) to observe better the experimental dispersion of the Dirac cone. The bulk bands corresponding approximately to the
photon energy of the experimental spectrum are shown as dashed red (DFT) and blue (GW ) curves in the three panels.

C. Valence band and Dirac cone of Sb2Te3

The bulk states and DC of Sb2Te3 show a similar quasi-
particle renormalization as the ones of Bi2Se3. The maxi-
mum labeled C in Fig. 1(c) moves to lower energies—as
did the one labeled A in Fig. 1(a). This maximum becomes
almost degenerate with the maximum at Ŵ̄, as discussed in
Ref. [15]. For the ternary compound Bi2Te2Se, by comparison
of Figs. 1(d) and 1(h), we see that a similar effect happens,
and the bulk maximum in the Ŵ̄-M̄ direction is pushed down
in energies. In that case, however, there is still a clear bulk
VBM above the maximum at Ŵ̄. The bulk VBM is found
in ARPES measurements in the Ŵ̄-M̄ direction for a photon
energy of 21 eV [82,86], and approximately 90 meV above
the Dirac point. For this ternary compound, the dispersion of
the DC does not change significantly between the DFT-TB
and the GW -TB calculations, but the Dirac point is “buried”
much deeper below the bulk VBM in the case of DFT-TB
(210 meV). Again, the GW -TB value (117 meV) is much
closer to the experimental one.

In contrast to Bi2Se3 and Bi2Te3, Sb2Te3 is naturally p

doped and, therefore, the DC is not observed in static ARPES,
which can only probe occupied states. In order to observe the
DC of Sb2Te3 experimentally, one has to use a technique like
trARPES, which is able to measure above the Fermi energy
as well [88,89]. In Fig. 6 we show a comparison between
our calculations for Sb2Te3 and trARPES measurements from
[87]. When many-body effects are taken into account, the bulk
bands in the vicinity of Ŵ̄ are fairly parabolic. As in the case
of Bi2Se3, this gives rise to surface resonances between the
DC and the bulk states, which has also been concluded from
experimental observations in Ref. [19]. In Fig. 6, the lower DC
is very clearly seen as a linearly dispersing surface resonance
in the experimental spectrum in panel (c). A red line is used
as a guide to the eye for its linear dispersion. In the left
parts of panels (a) and (b), we show our spectra calculated
with GW -TB and DFT-TB, respectively. The experimental
dispersion is indicated by the red line. Whereas the upper
part of the DC has a very similar dispersion in GW -TB and
DFT-TB, this is not the case for the lower part. The dispersion
obtained from DFT-TB deviates strongly from a straight line
and does not agree with the experimental one. In contrast, the

GW -TB calculation shown in panel (a) reproduces very well
the experimental band dispersion and surface-state velocity
below the Dirac point.

So far, we have discussed features near the Fermi energy.
Of course, the GW renormalization affects the whole band
structure, and we show now that the agreement with exper-
iment is indeed improved over a very wide energy range.
Figure 7 shows a comparison of the GW -TB calculation (left)
with an ARPES spectrum [90] (right) up to binding energies
3 eV below the Dirac point. Surface states appear in white
and light yellow color, surface resonances appear in yellow,
and bulk features appear in red. The theoretical spectrum
agrees remarkably well with the experimental spectrum. A
comparison of electron-energy loss spectra (EELS) on a wider
energy range, up to 50 eV, was shown in Ref. [15].

FIG. 6. On the left-hand sides of panels (a) and (b), we show
the GW -TB and DFT-TB calculations of Sb2Te3, respectively. The
results are compared with time-resolved ARPES shown on the right-
hand sides of panels (a) and (b) and fully in panel (c). The trARPES
spectra are reproduced with permission from Sumida et al. [87]. The
experimental dispersion of the lower Dirac cone (LDC) is shown in
red as a guide to the eye.
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FIG. 7. GW -TB calculation of a 100-QL film of Sb2Te3 with
an ARPES spectrum superimposed on the right-hand side and re-
produced with permission from Eschbach and Plucinski [90]. The
color coding allows surface states (white, and light yellow), surface
resonances (yellow), and bulk features (red) to be distinguished.
Energies are aligned such that the DP appears at 0 eV.

D. Topological characterization of Sb2Se3

The binary compound Sb2Se3 is a special case. Until very
recently, rhombohedral Sb2Se3 was believed to be trivial,
as suggested in the original paper [1] and subsequent DFT
studies. Only very recently, Cao et al. claimed [53] in a
comparative first-principles study that it is very likely a strong
topological insulator, just like the rest of the family. (However,
there is no experimental evidence so far.) Cao et al. argued that
the false prediction by previous DFT studies was not related
to the inherent problems of standard DFT but rather due to
the usage of inaccurate structural parameters in these stud-
ies. Since the rhombohedral/hexagonal geometry is not the
preferred structure for Sb2Se3 and its experimental growth in
this geometry is extremely challenging [91], there is no litera-
ture on experimental structural parameters of this compound.
Therefore, DFT calculations in the past were carried out using
the DFT relaxed lattice parameters. Reference [53] showed
that when DFT calculations are carried out with the lattice
parameters relaxed with a functional that includes van der
Waals interactions the material is predicted as topologically
nontrivial.

It is uncommon that DFT falsely predicts a topological ma-
terial to be trivial. DFT tends to do the opposite: Some trivial
materials are predicted as nontrivial [34], a direct consequence
of the overestimation of the DFT band inversion (Fig. 2). But
the case of Sb2Se3 is different: Standard DFT can predict
the correct topological character, but only if calculations are
carried out with the correct lattice parameters. This is not
surprising, since, after all, it is well known that strain can
cause a topological phase transition [36,92] and an incorrect
lattice parameter is, in a sense, equivalent to strain, potentially
leading DFT to predict a different topological phase.

Figure 8 shows the DFT and GW band structures of bulk
Sb2Se3, calculated with the relaxed lattice parameters from

FIG. 8. GW and DFT band structure of bulk Sb2Se3. The zero
energy is chosen at the VBM of the DFT calculation. The GW

calculation shows the actual correction with respect to the DFT
states, without an additional energy alignment.

Ref. [53]. One can see in this comparison a clear example of
the effect discussed in Fig. 2: In the same material, both types
of band gaps exist. For most of the k points (see, e.g., the Z,
F, or L point in Fig. 8), the band gap is trivial (Fig. 2 left) and
increases when many-body effects are included. At the Ŵ point
and in its vicinity, the band gap is inverted (Fig. 2 right) and
therefore decreases with the inclusion of many-body effects.
The GW band structure is represented in Fig. 8 without any
shift or alignment, showing the actual many-body corrections
of the DFT states. We see that the effect on the valence states
is significantly larger than that on the conduction states. This
is likely due to the self-interaction correction: In LDA, the
Se p states, which form the valence band (except around
the band inversion at the Ŵ point), are subject to the self-
interaction error and thus appear too high in energy. The GW

approximation contains the exact exchange potential, which
corrects this error and, as a consequence, pushes the states
down in energy.

In Fig. 9, we present the GW -TB band structure of a
100-QL slab of Sb2Se3. It clearly shows a TSS with a strong

FIG. 9. GW -TB band structure of a 100-QL film of Sb2Se3. The
color coding represents the degree of localization of the states on
the topmost QL in panel (a) and the in-plane spin polarization in
panel (b).
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FIG. 10. GW -TB band structures of the five compounds in a semi-infinite geometry. Energies are aligned such that the DP appears at 0 eV.

spin polarization. To the best of our knowledge, experimental
evidence of the topological nature of Sb2Se3, as well as its
experimental lattice parameters in the rhombohedral structure,
is still pending.

E. Semi-infinite systems

The Hamiltonians provided in the Supplemental Material
[30] can be directly used in postprocessing programs like
WANNIERTOOLS [62]. We have performed semi-infinite cal-
culations with the iterative Green-function method [60,61]
as implemented in WANNIERTOOLS. The spectral functions
thus obtained for the five compounds are shown in Fig. 10.
Surface states and surface resonances are clearly visible as red
(darkest) and yellow (brightest) features. Bulk states appear
in green and blue colors (intermediate shades when seen in
grayscale).

V. SUMMARY AND CONCLUSIONS

In this paper, we have demonstrated that DFT calculations
cannot explain, in a consistent manner, observations obtained
with different experimental techniques and might have led
to erroneous interpretations of experimental measurements in
the past. We attribute this to the missing many-body effects
in standard DFT functionals, which affects DFT calculations
but also tight-binding calculations based on DFT parametriza-
tions.

In the present paper, we provide improved tight-binding
Hamiltonians for Bi2Se3, Bi2Te3, Sb2Te3, Sb2Se3, and
Bi2Te2Se with ab initio parameters that are derived from
GW calculations based on an all-electron description within
the FLAPW method. The GW approach employs a diagram-
matic expansion of many-body effects and thus goes beyond

FIG. 11. Schematic summary of the behavior of the bulk states,
surface states, and lower-DC resonances of the five compounds.

standard DFT calculations. We have presented calculations
performed with these Hamiltonians and have discussed the
most prominent differences to DFT by a comparison with
photoemission experiments. We have compared states both
close to the Fermi energy and at larger binding energies. In
all cases, we found that the GW results are overall more
consistent with experimental observations of photoemission,
optics, EELS, and transport than DFT calculations.

In contrast to previous works, we have discussed the elec-
tronic structure of bulklike systems, i.e., of systems with very
many layers, and, thus, provided a revised electronic structure
in which many-body effects are included and bulk states coex-
ist with surface states and surface resonances. Figure 11 serves
as a visual summary of these revised electronic structures.
For most of the five stoichiometric compounds studied here,
the pure surface character of the lower DC extends only a
few meV below the Dirac point. The lower DC thus forms
a surface resonance with the bulk valence bands. This was
clearly seen in Fig. 10. These bulk valence bands are fairly
parabolic in the cases of Bi2Se3 and Sb2Te3, and they present
a camelback shape or M shape for Bi2Te3, Sb2Se3 (very
flat), and the ternary compound Bi2Te2Se. In the case of
DFT, on the other hand, camelback shapes are predicted for
all materials, sometimes in disagreement with experiments
[15,40,41,43]. We have discussed this failure of DFT to be a
consequence of its underestimation of trivial band gaps and its
overestimation of inverted band gaps. Our tight-binding film
and semi-infinite calculations with first-principles parameters
have confirmed the bulk results published in the literature
and have, in addition, unveiled how they affect the topolog-
ical surface states and the surface resonances with the bulk
states.

The bulk GW tight-binding Hamiltonians of the five com-
pounds are provided in the Supplemental Material [30] to the
community. If used, the present paper should be cited. The
technical details are described in Appendix B.
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APPENDIX A: WANNIER INTERPOLATION

A review on Wannier functions and the Wannier interpola-
tion can be found in Ref. [47]. For completeness, the method
is briefly outlined here. We employ a transformation from
Bloch states φkn(r), which are defined on a finite k-point set
(e.g., 4 × 4 × 4) to Wannier functions wRm(r). Each Wannier
function is localized on a specific atom of the corresponding
supercell (4 × 4 × 4 in the above example), where R is the
lattice vector of the unit cell that contains the atom. For
simplicity, we consider m as a composite index composed of
the atom index (if the unit cell contains more than one atom)
and different Wannier orbitals (e.g., s-like, px-like, etc.). We
first consider the unit cell at the origin for which R = 0. The
Wannier functions are given by linear combinations of Bloch
states:

w0m(r) =
1

N

∑

k,n

Umn(k)φkn(r), (A1)

where N is the number of k points, equivalently the number of
unit cells in the supercell, and the coefficients Umn(k) are often
determined from the condition that the Wannier functions
be maximally localized and orthonormal in the supercell.
(If there are as many Wannier functions as there are Bloch
functions, this means that U is a unitary matrix.) Maximally
localized Wannier functions can be obtained by the WAN-
NIER90 library [21]. However, in Fig. 12 we show that for
these materials (Bi2Se3 is shown as a representative) whether
using maximally localized or first-guess Wannier functions (as
defined in Sec. III) does not make visible differences in the
DFT and GW interpolated band structures.

By virtue of the Bloch theorem, the Wannier functions in
neighboring unit cells R �= 0 are generated by an additional
exponential factor:

wRm(r) = w0m(r − R)

=
1

N

∑

k,n

e−ikRUmn(k)φkn(r). (A2)

With the help of the “Wannier Bloch functions”

wkm(r) =
∑

n

Umn(k)φkn(r), (A3)

we can write Eq. (A2) as simple Fourier transforms:

wRm(r) =
1

N

∑

k

e−ikR
wkm(r), (A4)

the inverse Fourier transform of which is

wkm(r) =
∑

R

eikR
wRm(r). (A5)
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FIG. 12. DFT (top) and GW (bottom) interpolated band struc-
tures of Bi2Se3, comparing the ones obtained with maximally lo-
calized Wannier functions (MLWF) and with first-guess Wannier
functions (FGWF).

We will generalize Eq. (A5) to an arbitrary q vector (i.e.,
one that may not be an element of the k-point set) in the
following. The Wannier functions [Eq. (A4)] are localized in a
supercell but repeat themselves in all other supercells without
a phase factor. This is a consequence of the Bloch theorem;
the exponential factor in Eq. (A2) becomes 1 if R is a lattice
vector that connects two supercells. Let us assume for now
that the Wannier functions do not repeat themselves, that they
are normalized (with respect to the whole space), and that R

can run over all (i.e., infinitely many) lattice vectors. Then, we
can define a general Wannier Bloch function:

wqm(r) =
1

√
M

all
∑

R

eiqR
wRm(r), (A6)

where R runs over all lattice vectors and M is the (infinite)
number of lattice vectors, equivalent to the (infinite) number
of unit cells in the crystal. So, wqm is a Bloch function for q

by construction, and it is normalized with respect to the whole
space by virtue of the prefactor 1/

√
M. Now we can diag-

onalize the Hamiltonian at this q vector, which interpolates
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FIG. 13. Band structures of bulk Sb2Te3, comparing the ones
obtained in an explicit (a) DFT and (b) GW calculation (light orange)
with that obtained with the Wannier interpolation technique (dashed,
black).

the band structure (Wannier interpolation). The Hamiltonian
matrix written in terms of wqm(r) is

Hmm′ (q) = 〈wqm|H |wqm′〉ws

=
1

M

all
∑

R,R′

eiq(R′−R)〈wRm|H |wR′m′〉ws

=
all

∑

R

eiqR〈w0m|H |wRm′〉ws

≈
∑

R

eiqR〈w0m|H |wRm′〉sc

=
1

N

∑

R

∑

k

ei(q−k)R〈wkm|H |wkm′〉uc

=
∑

k

[

1

N

∑

R

ei(q−k)R

]

Hmm′ (k), (A7)

where we have specified with “ws” (whole space), “sc”
(supercell), and “uc” (unit cell) over which volume the

integration in 〈·|H |·〉 is to be taken. The approximation (≈)
replaces the infinite sum over R by a finite one that is
restricted to the supercell. (Here, the supercell should have
the form of a Wigner-Seitz cell.) It utilizes the fact that
Hmm′ (R) falls off exponentially with R. Equation (A7) defines
an approximated Hamiltonian matrix at an arbitrary k point
q not necessarily contained in the original k-point set for the
ab initio calculation. Here, it becomes evident that taking the
approximation (≈) above is essential for the interpolation to a
finer mesh, otherwise a back-and-forth Fourier transformation
would be an identity operation without any effect.

Although we have specifically defined H to be a single-
particle Hamiltonian operator, the derivation of Eq. (A7)
works generally for arbitrary local operators H and even for
nonlocal operators, as long as they fall off sufficiently fast in
real space. In this sense, H may be the Hermitian Hamiltonian
of a single-particle system, but it may also be the complex
self-energy operator calculated in the GW method. When used
with the latter, not only can the energies of the quasiparticle
states be interpolated but also their lifetimes (imaginary parts
of the quasiparticle energies).

Specifically, if H is the single-particle Hamiltonian, the
matrix elements on the right-hand side of Eq. (A7) read

Hmm′ (k) =
∑

n

U ∗
mn(k)Um′n(k)ǫkn, (A8)

where ǫkn are the energy eigenvalues. In the context of the
one-shot GW method, the latter can also be taken as the
complex quasiparticle energies, giving rise to non-Hermitian
complex matrices Hmm′ (k) to be used in Eq. (A7). The result-
ing interpolated matrices Hmm′ (q) and their eigenvalues are
then complex, too. In this way, Eq. (A7) interpolates both the
quasiparticle energies and lifetimes.

For the calculations in this paper, we have used a
scheme equivalent to that activated when the keyword
use_ws_distance is used in the WANNIER90 code (see www.
wannier.org/doc/user_guide.pdf). This improves in general
the k-point convergence of the Wannier interpolation and
avoids a potential breaking of the Kramers degeneracy.

In Fig. 13, we show the DFT-LDA and GW band structures
of Sb2Te3, comparing the interpolated and the explicitly cal-
culated results. The agreement is excellent and only in the case
of GW there are some small deviations between the two band
structures for a few k points (mostly in the Z-F direction).
These differences are not due to the Wannier interpolation
technique itself, but due to the fact that the explicit GW band
structure was obtained for a 4 × 4 × 4 k mesh, whereas the
Wannier interpolation was performed starting from a GW

calculation based on a 6 × 6 × 6 k mesh (4 × 4 × 4 k points
were not enough to obtain a good interpolation). Due to the
computational cost of GW calculations, obtaining an explicit
GW band structure with the 8 × 8 × 8 mesh used in the
main text is computationally very demanding. Nevertheless,
for illustration purposes, the agreement for the 6 × 6 × 6
interpolated band structure is already excellent.

APPENDIX B: GW TIGHT-BINDING HAMILTONIANS

The format of the Hamiltonians provided in the Supple-
mental Material [30] is the same as the one used by the

155147-12



MANY-BODY CORRECTED TIGHT-BINDING … PHYSICAL REVIEW B 100, 155147 (2019)

FIG. 14. Same as panels (e)–(l) of Fig. 1 for a larger energy range.
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FIG. 15. Electronic band structure of the five compounds repre-
sented in three dimensions.

WANNIER90 package [21]: first line, a description of the data;
second line, number of Wannier functions; third line, number
of R points in the Wigner-Seitz cell. Then there is a block of
integers that give the degeneracy of each of the R points. Each
line contains 15 entries. These are followed by one line per
Hamiltonian matrix element. Each line shows the components
of the R vector in the basis of the lattice basis vectors, the
i and j indices of the matrix element Hi j , followed by two
real numbers giving the real and imaginary parts of Hi j . We
chose this format because it is used by a number of post-
processing programs like WANNIERTOOLS. The results of slab
calculations performed with these Hamiltonians are shown in
Fig. 14 for a large energy range. Another advantage of the
use of the Wannier interpolation method is the possibility
to map the whole Brillouin zone very densely. For example,
this makes the explicit computation of Fermi surfaces and
anomalous Hall conductivity of realistic materials possible,
which, otherwise, cannot be carried out by first-principles
calculations due to the huge set of k points needed to achieve
convergence. It also allows the anisotropy of the Dirac cone
to be visualized by representing it in the full two-dimensional
Brillouin zone. The resulting three-dimensional representa-
tions of the GW -TB Dirac cones are shown in Fig. 15.

The Hamiltonians were obtained with first-guess Wannier
functions (see Fig. 12), i.e., setting num_iter=0 in the input
file of WANNIER90. For all compounds, we used Wannier
functions with orbital character pz, px, py (the order is chosen
for compatibility with the WANNIER90 code). The order of the
basis functions is thus

p 1↑
z p1↑

x p1↑
y p2↑

z p2↑
x p2↑

y p3↑
z p3↑

x p3↑
y p4↑

z p4↑
x p4↑

y p5↑
z p5↑

x p5↑
y

p 1↓
z p1↓

x p1↓
y p2↓

z p2↓
x p2↓

y p3↓
z p3↓

x p3↓
y p4↓

z p4↓
x p4↓

y p5↓
z p5↓

x p5↓
y ,

where the number indicates the atom and the arrow refers to
the spin. The Hamiltonian matrix elements in the files pro-
vided in the Supplemental Material [30] are given in (hartree)
atomic units. We used the rhombohedral lattice structure with
five atoms in the unit cell. The atomic positions and lattice
vectors in the calculations are summarized in Table I. To
improve the k-point convergence of the Wannier interpolation
and to allow for a straightforward calculation of the slab, the
atoms were backfolded such that they all belong to the same
quintuple layer. The backfolding vectors were the following
linear combinations of lattice vectors: atom 1, −a1 + a3;
atom 2, −a1; atom 3, +a3; atom 4, −a1; atom 5, +a3. (The
Wannier centers are approximately on the backfolded atomic
positions.)

TABLE I. Lattice vectors, atomic positions, and Fermi energy of
the five compounds.

Bi2Se3

Lattice a1 0.000000 −4.512025 18.024962
vectors a2 3.907528 2.256012 18.024962
(bohr) a3 −3.907528 2.256012 18.024962

Atomic Se 0.0000 0.0000 0.0000
positions Se 0.2109 0.2109 0.2109
(relative Se −0.2109 −0.2109 −0.2109
coordinates) Bi 0.4006 0.4006 0.4006

Bi −0.4006 −0.4006 −0.4006

Fermi energy 0.213814 (hartree)

Bi2Te3

Lattice a1 0.000000 −4.782547 19.204021
vectors a2 4.141807 2.391274 19.204021
(bohr) a3 −4.141807 2.391274 19.204021

Atomic Te 0.0000 0.0000 0.0000
positions Te 0.2120 0.2120 0.2120
(relative Te −0.2120 −0.2120 −0.2120
coordinates) Bi 0.4000 0.4000 0.4000

Bi −0.4000 −0.4000 −0.4000

Fermi energy 0.221526 (hartree)

Sb2Se3

Lattice a1 0.000000 −4.425957 17.982656
vectors a2 3.832991 2.212979 17.982656
(bohr) a3 −3.832991 2.212979 17.982656

Atomic Se 0.0000 0.0000 0.0000
positions Se 0.2120 0.2120 0.2120
(relative Se −0.2120 −0.2120 −0.2120
coordinates) Sb 0.4000 0.4000 0.4000

Sb −0.4000 −0.4000 −0.4000

Fermi energy 0.210445 (hartree)

Sb2Te3

Lattice a1 0.000000 −4.651968 19.186050
vectors a2 4.028722 2.325984 19.186050
(bohr) a3 −4.028722 2.325984 19.186050

Atomic Te 0.0000 0.0000 0.0000
positions Te 0.2128 0.2128 0.2128
(relative Te −0.2128 −0.2128 −0.2128
coordinates) Sb 0.3988 0.3988 0.3988

Sb −0.3988 −0.3988 −0.3988

Fermi energy 0.228224 (hartree)

Bi2Te2Se

Lattice a1 0.000000 −4.667741 18.808595
vectors a2 4.042382 2.333871 18.808595
(bohr) a3 −4.042382 2.333871 18.808595

Atomic Se 0.0000 0.0000 0.0000
positions Te 0.2117 0.2117 0.2117
(relative Te −0.2117 −0.2117 −0.2117
coordinates) Bi 0.3961 0.3961 0.3961

Bi −0.3961 −0.3961 −0.3961

Fermi energy 0.272361 (hartree)
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The following files are provided—hamiltonian_
Sb2Te3_GWreal.txt, hamiltonian_Sb2Te3_GWcomplex.txt,
and wannier_centers_Sb2Te3.txt—for the Hamiltonians with

real and complex eigenvalues, respectively (the real part of
both being practically identical), as well as the list of Wannier
centers.
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