000866096 001__ 866096
000866096 005__ 20240619091253.0
000866096 0247_ $$2doi$$a10.1088/1361-6528/ab4d96
000866096 0247_ $$2ISSN$$a0957-4484
000866096 0247_ $$2ISSN$$a1361-6528
000866096 0247_ $$2Handle$$a2128/23936
000866096 0247_ $$2pmid$$apmid:31610534
000866096 0247_ $$2WOS$$aWOS:000494690100001
000866096 037__ $$aFZJ-2019-05315
000866096 082__ $$a530
000866096 1001_ $$0P:(DE-HGF)0$$aGasparyan, F.$$b0
000866096 245__ $$aActivation–relaxation processes and related effects in quantum conductance of molecular junctions
000866096 260__ $$aBristol$$bIOP Publ.$$c2020
000866096 3367_ $$2DRIVER$$aarticle
000866096 3367_ $$2DataCite$$aOutput Types/Journal article
000866096 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579528326_30829
000866096 3367_ $$2BibTeX$$aARTICLE
000866096 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866096 3367_ $$00$$2EndNote$$aJournal Article
000866096 520__ $$aWe reveal the comparative relationship between small changes in quantum conductivity behavior for molecular junctions. We clarify the mechanisms of acquiring and losing additional thermal activation energy during average current flow in a gold-1,4 benzenediamine (BDA)-gold molecular junction and explain the quantum conductance modulation process. Small changes in working temperature lead to a change in quantum conductivity, which is reflected in random telegraph signal behavior. We demonstrate the high sensitivity of the BDA molecules to small changes in temperature. For BDA molecules, conductance thermo-sensitivity values are relatively high near to $\left(0.8\div1.6\right)\times {10}^{-7}\,{{\rm{\Omega }}}^{-1}\,{{\rm{K}}}^{-1}.$ This advantage can be used to measure weak variations in the ambient temperature. We show that the additional thermal energy arising from the change in temperature can impact on the strength of the electrode-molecule coupling, on the modulation of quantum conductivity. Local changes in quantum conductance of the order of quanta or smaller are conditioned by small random changes in the working regime arising from some of the activation processes. On the basis of the modulation of conductance, we calculate the magnitude of the spring constant of the 1,4 benzenediamine molecule as ${k}_{s}\approx 7.1\times {10}^{-3}\,{\rm{N}}\,{{\rm{m}}}^{-1}$ at the stretching length of 0.03 nm for the Au−NH2 molecular junction.
000866096 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000866096 588__ $$aDataset connected to CrossRef
000866096 7001_ $$0P:(DE-Juel1)171802$$aBoichuk, Nazarii$$b1
000866096 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, S.$$b2$$eCorresponding author
000866096 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/1361-6528/ab4d96$$gVol. 31, no. 4, p. 045001 -$$n4$$p045001 -1-7$$tNanotechnology$$v31$$x1361-6528$$y2020
000866096 8564_ $$uhttps://juser.fz-juelich.de/record/866096/files/Gasparyan_2020_Nanotechnology_31_045001.pdf$$yOpenAccess
000866096 8564_ $$uhttps://juser.fz-juelich.de/record/866096/files/Gasparyan_2020_Nanotechnology_31_045001.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866096 909CO $$ooai:juser.fz-juelich.de:866096$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171802$$aForschungszentrum Jülich$$b1$$kFZJ
000866096 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b2$$kFZJ
000866096 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000866096 9141_ $$y2020
000866096 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000866096 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866096 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866096 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866096 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOTECHNOLOGY : 2017
000866096 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866096 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866096 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866096 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866096 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866096 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866096 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866096 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866096 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866096 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866096 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866096 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866096 920__ $$lyes
000866096 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000866096 9801_ $$aFullTexts
000866096 980__ $$ajournal
000866096 980__ $$aVDB
000866096 980__ $$aUNRESTRICTED
000866096 980__ $$aI:(DE-Juel1)ICS-8-20110106
000866096 981__ $$aI:(DE-Juel1)IBI-3-20200312