Hauptseite > Publikationsdatenbank > Activation–relaxation processes and related effects in quantum conductance of molecular junctions > print |
001 | 866096 | ||
005 | 20240619091253.0 | ||
024 | 7 | _ | |a 10.1088/1361-6528/ab4d96 |2 doi |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 2128/23936 |2 Handle |
024 | 7 | _ | |a pmid:31610534 |2 pmid |
024 | 7 | _ | |a WOS:000494690100001 |2 WOS |
037 | _ | _ | |a FZJ-2019-05315 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Gasparyan, F. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Activation–relaxation processes and related effects in quantum conductance of molecular junctions |
260 | _ | _ | |a Bristol |c 2020 |b IOP Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1579528326_30829 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We reveal the comparative relationship between small changes in quantum conductivity behavior for molecular junctions. We clarify the mechanisms of acquiring and losing additional thermal activation energy during average current flow in a gold-1,4 benzenediamine (BDA)-gold molecular junction and explain the quantum conductance modulation process. Small changes in working temperature lead to a change in quantum conductivity, which is reflected in random telegraph signal behavior. We demonstrate the high sensitivity of the BDA molecules to small changes in temperature. For BDA molecules, conductance thermo-sensitivity values are relatively high near to $\left(0.8\div1.6\right)\times {10}^{-7}\,{{\rm{\Omega }}}^{-1}\,{{\rm{K}}}^{-1}.$ This advantage can be used to measure weak variations in the ambient temperature. We show that the additional thermal energy arising from the change in temperature can impact on the strength of the electrode-molecule coupling, on the modulation of quantum conductivity. Local changes in quantum conductance of the order of quanta or smaller are conditioned by small random changes in the working regime arising from some of the activation processes. On the basis of the modulation of conductance, we calculate the magnitude of the spring constant of the 1,4 benzenediamine molecule as ${k}_{s}\approx 7.1\times {10}^{-3}\,{\rm{N}}\,{{\rm{m}}}^{-1}$ at the stretching length of 0.03 nm for the Au−NH2 molecular junction. |
536 | _ | _ | |a 523 - Controlling Configuration-Based Phenomena (POF3-523) |0 G:(DE-HGF)POF3-523 |c POF3-523 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Boichuk, Nazarii |0 P:(DE-Juel1)171802 |b 1 |
700 | 1 | _ | |a Vitusevich, S. |0 P:(DE-Juel1)128738 |b 2 |e Corresponding author |
773 | _ | _ | |a 10.1088/1361-6528/ab4d96 |g Vol. 31, no. 4, p. 045001 - |0 PERI:(DE-600)1362365-5 |n 4 |p 045001 -1-7 |t Nanotechnology |v 31 |y 2020 |x 1361-6528 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866096/files/Gasparyan_2020_Nanotechnology_31_045001.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866096/files/Gasparyan_2020_Nanotechnology_31_045001.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866096 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171802 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)128738 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-523 |2 G:(DE-HGF)POF3-500 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2020 |
915 | _ | _ | |a Creative Commons Attribution CC BY 3.0 |0 LIC:(DE-HGF)CCBY3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOTECHNOLOGY : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-8-20110106 |k ICS-8 |l Bioelektronik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-8-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-3-20200312 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|