000866098 001__ 866098
000866098 005__ 20240712084530.0
000866098 0247_ $$2doi$$a10.1109/JPHOTOV.2019.2933185
000866098 0247_ $$2ISSN$$a2156-3381
000866098 0247_ $$2ISSN$$a2156-3403
000866098 0247_ $$2Handle$$a2128/23199
000866098 0247_ $$2altmetric$$aaltmetric:69429689
000866098 0247_ $$2WOS$$aWOS:000504310400003
000866098 037__ $$aFZJ-2019-05317
000866098 082__ $$a530
000866098 1001_ $$0P:(DE-Juel1)168199$$aLi, Huimin$$b0$$eCorresponding author$$ufzj
000866098 245__ $$aInfluence of Room Temperature Sputtered Al-Doped Zinc Oxide on Passivation Quality in Silicon Heterojunction Solar Cells
000866098 260__ $$aNew York, NY$$bIEEE$$c2019
000866098 3367_ $$2DRIVER$$aarticle
000866098 3367_ $$2DataCite$$aOutput Types/Journal article
000866098 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572855933_9193
000866098 3367_ $$2BibTeX$$aARTICLE
000866098 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866098 3367_ $$00$$2EndNote$$aJournal Article
000866098 520__ $$aAl-doped zinc oxide (AZO) is a potential candidate to substitute tin-doped indium oxide in silicon heterojunction (SHJ) solar cells due to its low cost and low ecological impact. The AZO, sputtered at room temperature (RT), is of particular interest because of low thermal budget and potential for high throughput production with the well-established industrial methods. In SHJ solar cells, high effective carrier lifetime prerequisite for the high open-circuit voltage is achieved with surface passivation by intrinsic amorphous silicon layers followed by doped silicon layers. The passivation quality may be affected by the subsequent sputtering of an AZO layer especially at RT. In this article, we investigated the influence of the AZO sputtering and postdeposition annealing on the effective carrier lifetime in symmetrical silicon layer stacks with n- or p-type doped silicon layers and solar cell precursors. It has been found that the effective carrier lifetime significantly decreased after AZO sputtering at RT. The detrimental effect of AZO sputtering is substrate temperature dependent and is smaller or even absent at elevated temperatures. However, postdeposition annealing, equivalent to the Ag paste curing, mostly recovered the effective carrier lifetime in the symmetrical stacks as well as in the cell precursors. Finally, an aperture area efficiency of 21.2% has been achieved for the 19 mm × 19 mm SHJ solar cell prepared with room temperature sputtered AZO.
000866098 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000866098 588__ $$aDataset connected to CrossRef
000866098 7001_ $$0P:(DE-Juel1)169946$$aDuan, Weiyuan$$b1$$ufzj
000866098 7001_ $$0P:(DE-Juel1)130263$$aLambertz, Andreas$$b2$$ufzj
000866098 7001_ $$0P:(DE-Juel1)130252$$aHupkes, Jurgen$$b3
000866098 7001_ $$0P:(DE-Juel1)130233$$aDing, Kaining$$b4
000866098 7001_ $$0P:(DE-Juel1)143905$$aRau, Uwe$$b5$$ufzj
000866098 7001_ $$0P:(DE-Juel1)130212$$aAstakhov, Oleksandr$$b6$$ufzj
000866098 773__ $$0PERI:(DE-600)2585714-9$$a10.1109/JPHOTOV.2019.2933185$$gVol. 9, no. 6, p. 1485 - 1491$$n6$$p1485 - 1491$$tIEEE journal of photovoltaics$$v9$$x2156-3403$$y2019
000866098 8564_ $$uhttps://juser.fz-juelich.de/record/866098/files/08808870.pdf$$yRestricted
000866098 8564_ $$uhttps://juser.fz-juelich.de/record/866098/files/accepted%20manuscript.pdf$$yPublished on 2019-08-21. Available in OpenAccess from 2020-08-21.
000866098 8564_ $$uhttps://juser.fz-juelich.de/record/866098/files/accepted%20manuscript.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-08-21. Available in OpenAccess from 2020-08-21.
000866098 8564_ $$uhttps://juser.fz-juelich.de/record/866098/files/08808870.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866098 909CO $$ooai:juser.fz-juelich.de:866098$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168199$$aForschungszentrum Jülich$$b0$$kFZJ
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169946$$aForschungszentrum Jülich$$b1$$kFZJ
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130263$$aForschungszentrum Jülich$$b2$$kFZJ
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130252$$aForschungszentrum Jülich$$b3$$kFZJ
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130233$$aForschungszentrum Jülich$$b4$$kFZJ
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich$$b5$$kFZJ
000866098 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130212$$aForschungszentrum Jülich$$b6$$kFZJ
000866098 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000866098 9141_ $$y2019
000866098 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866098 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866098 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866098 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J PHOTOVOLT : 2017
000866098 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866098 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866098 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866098 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866098 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866098 920__ $$lyes
000866098 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000866098 9801_ $$aFullTexts
000866098 980__ $$ajournal
000866098 980__ $$aVDB
000866098 980__ $$aUNRESTRICTED
000866098 980__ $$aI:(DE-Juel1)IEK-5-20101013
000866098 981__ $$aI:(DE-Juel1)IMD-3-20101013