000866099 001__ 866099
000866099 005__ 20240625095122.0
000866099 0247_ $$2doi$$a10.1371/journal.pcbi.1007382
000866099 0247_ $$2ISSN$$a1553-734X
000866099 0247_ $$2ISSN$$a1553-7358
000866099 0247_ $$2Handle$$a2128/23211
000866099 0247_ $$2altmetric$$aaltmetric:69569677
000866099 0247_ $$2pmid$$apmid:31665146
000866099 0247_ $$2WOS$$aWOS:000500776600040
000866099 037__ $$aFZJ-2019-05318
000866099 082__ $$a610
000866099 1001_ $$00000-0002-2735-3215$$aBruce, Neil J.$$b0
000866099 245__ $$aRegulation of adenylyl cyclase 5 in striatal neurons confers the ability to detect coincident neuromodulatory signals
000866099 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2019
000866099 3367_ $$2DRIVER$$aarticle
000866099 3367_ $$2DataCite$$aOutput Types/Journal article
000866099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572943151_25345
000866099 3367_ $$2BibTeX$$aARTICLE
000866099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866099 3367_ $$00$$2EndNote$$aJournal Article
000866099 520__ $$aLong-term potentiation and depression of synaptic activity in response to stimuli is a key factor in reinforcement learning. Strengthening of the corticostriatal synapses depends on the second messenger cAMP, whose synthesis is catalysed by the enzyme adenylyl cyclase 5 (AC5), which is itself regulated by the stimulatory Gαolf and inhibitory Gαi proteins. AC isoforms have been suggested to act as coincidence detectors, promoting cellular responses only when convergent regulatory signals occur close in time. However, the mechanism for this is currently unclear, and seems to lie in their diverse regulation patterns. Despite attempts to isolate the ternary complex, it is not known if Gαolf and Gαi can bind to AC5 simultaneously, nor what activity the complex would have. Using protein structure-based molecular dynamics simulations, we show that this complex is stable and inactive. These simulations, along with Brownian dynamics simulations to estimate protein association rates constants, constrain a kinetic model that shows that the presence of this ternary inactive complex is crucial for AC5’s ability to detect coincident signals, producing a synergistic increase in cAMP. These results reveal some of the prerequisites for corticostriatal synaptic plasticity, and explain recent experimental data on cAMP concentrations following receptor activation. Moreover, they provide insights into the regulatory mechanisms that control signal processing by different AC isoforms.
000866099 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000866099 588__ $$aDataset connected to CrossRef
000866099 7001_ $$0P:(DE-HGF)0$$aNarzi, Daniele$$b1
000866099 7001_ $$0P:(DE-HGF)0$$aTrpevski, Daniel$$b2
000866099 7001_ $$00000-0001-6995-8389$$avan Keulen, Siri C.$$b3
000866099 7001_ $$00000-0002-1952-9583$$aNair, Anu G.$$b4
000866099 7001_ $$0P:(DE-HGF)0$$aRöthlisberger, Ursula$$b5
000866099 7001_ $$00000-0001-5951-8670$$aWade, Rebecca C.$$b6$$eCorresponding author
000866099 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b7$$eCorresponding author
000866099 7001_ $$00000-0002-0550-0739$$aHellgren Kotaleski, Jeanette$$b8$$eCorresponding author
000866099 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1007382$$gVol. 15, no. 10, p. e1007382 -$$n10$$pe1007382 -$$tPLoS Computational Biology$$v15$$x1553-7358$$y2019
000866099 8564_ $$uhttps://juser.fz-juelich.de/record/866099/files/journal.pcbi.1007382.pdf$$yOpenAccess
000866099 8564_ $$uhttps://juser.fz-juelich.de/record/866099/files/journal.pcbi.1007382.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866099 909CO $$ooai:juser.fz-juelich.de:866099$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich$$b7$$kFZJ
000866099 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000866099 9141_ $$y2019
000866099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866099 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866099 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866099 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2017
000866099 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866099 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866099 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866099 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866099 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866099 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866099 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866099 920__ $$lyes
000866099 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x0
000866099 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x1
000866099 980__ $$ajournal
000866099 980__ $$aVDB
000866099 980__ $$aUNRESTRICTED
000866099 980__ $$aI:(DE-Juel1)IAS-5-20120330
000866099 980__ $$aI:(DE-Juel1)INM-9-20140121
000866099 9801_ $$aFullTexts