001     866100
005     20220930130221.0
024 7 _ |a 10.1002/btpr.2917
|2 doi
024 7 _ |a 1520-6033
|2 ISSN
024 7 _ |a 8756-7938
|2 ISSN
024 7 _ |a 2128/24331
|2 Handle
024 7 _ |a pmid:31587523
|2 pmid
024 7 _ |a WOS:000493578100001
|2 WOS
037 _ _ |a FZJ-2019-05319
082 _ _ |a 660
100 1 _ |a Pooth, Viola
|0 P:(DE-Juel1)166473
|b 0
|u fzj
245 _ _ |a Comprehensive analysis of metabolic sensitivity of 1,4‐butanediol producing Escherichia coli toward substrate and oxygen availability
260 _ _ |a Malden, MA
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1581430657_17239
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Nowadays, chemical production of 1,4‐butanediol is supplemented by biotechnological processes using a genetically modified Escherichia coli strain, which is an industrial showcase of successful application of metabolic engineering. However, large scale bioprocess performance can be affected by presence of physical and chemical gradients in bioreactors which are a consequence of imperfect mixing and limited oxygen transfer. Hence, upscaling comes along with local and time dependent fluctuations of cultivation conditions. This study emphasizes on scale‐up related effects of microbial 1,4‐butanediol production by comprehensive bioprocess characterization in lab scale. Due to metabolic network constraints 1,4‐butanediol formation takes place under oxygen limited microaerobic conditions, which can be hardly realized in large scale bioreactor. The purpose of this study was to assess the extent to which substrate and oxygen availability influence the productivity. It was found, that the substrate specific product yield and the production rate are higher under substrate excess than under substrate limitation. Furthermore, the level of oxygen supply within microaerobic conditions revealed strong effects on product and by‐product formation. Under strong oxygen deprivation nearly 30% of the consumed carbon is converted into 1,4‐butanediol, whereas an increase in oxygen supply results in 1,4‐butanediol reduction of 77%. Strikingly, increasing oxygen availability leads to strong increase of main by‐product acetate as well as doubled carbon dioxide formation. The study provides clear evidence that scale‐up of microaerobic bioprocesses constitute a substantial challenge. Although oxygen is strictly required for product formation, the data give clear evidence that terms of anaerobic and especially aerobic conditions strongly interfere with 1,4‐butanediol production.
536 _ _ |a 581 - Biotechnology (POF3-581)
|0 G:(DE-HGF)POF3-581
|c POF3-581
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gaalen, Kathrin
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Trenkamp, Sandra
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wiechert, Wolfgang
|0 P:(DE-Juel1)129076
|b 3
|u fzj
700 1 _ |a Oldiges, Marco
|0 P:(DE-Juel1)129053
|b 4
|e Corresponding author
773 _ _ |a 10.1002/btpr.2917
|0 PERI:(DE-600)2003526-3
|n 1
|p e2917
|t Biotechnology progress
|v 36
|y 2020
|x 1520-6033
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866100/files/Pooth_et_al-2019-Biotechnology_Progress.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866100/files/Pooth_et_al-2019-Biotechnology_Progress.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866100
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166473
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129076
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129053
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-581
|2 G:(DE-HGF)POF3-500
|v Biotechnology
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOTECHNOL PROGR : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21