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IMPORTANCE Major depressive disorder, bipolar disorder, posttraumatic stress disorder,
and anxiety disorders are highly comorbid and have shared clinical features. It is not yet
known whether their clinical overlap is reflected at the neurobiological level.

OBJECTIVE To detect transdiagnostic convergence in abnormalities in task-related
brain activation.

DATA SOURCE Task-related functional magnetic resonance imaging articles published in
PubMed, Web of Science, and Google Scholar during the last decade comparing control
individuals with patients with mood, posttraumatic stress, and anxiety disorders
were examined.

STUDY SELECTION Following Preferred Reporting Items for Systematic Reviews and
Meta-analyses reporting guidelines, articles were selected if they reported stereotactic
coordinates of whole-brain–based activation differences between adult patients and
control individuals.

DATA EXTRACTION AND SYNTHESIS Coordinates of case-control differences coded by
diagnosis and by cognitive domain based on the research domain criteria were analyzed
using activation likelihood estimation.

MAIN OUTCOMES AND MEASURES Identification of transdiagnostic clusters of aberrant
activation and quantification of the contribution of diagnosis and cognitive domain
to each cluster.

RESULTS A total of 367 experiments (major depressive disorder, 149; bipolar disorder, 103;
posttraumatic stress disorder, 55; and anxiety disorders, 60) were included comprising
observations from 4507 patients and 4755 control individuals. Three right-sided clusters of
hypoactivation were identified centered in the inferior prefrontal cortex/insula (volume,
2120 mm3), the inferior parietal lobule (volume, 1224 mm3), and the putamen (volume,
888 mm3); diagnostic differences were noted only in the putamen (χ 2

3 = 8.66; P = .03),
where hypoactivation was more likely in bipolar disorder (percentage contribution = 72.17%).
Tasks associated with cognitive systems made the largest contribution to each cluster
(percentage contributions >29%). Clusters of hyperactivation could only be detected using a
less stringent threshold. These were centered in the perigenual/dorsal anterior cingulate
cortex (volume, 2208 mm3), the left amygdala/parahippocampal gyrus (volume, 2008 mm3),
and the left thalamus (volume, 1904 mm3). No diagnostic differences were observed
(χ 2

3 < 3.06; P > .38), while tasks associated with negative valence systems made the largest
contribution to each cluster (percentage contributions >49%). All findings were robust to the
moderator effects of age, sex, and magnetic field strength of the scanner and medication.

CONCLUSIONS AND RELEVANCE In mood disorders, posttraumatic stress disorder, and anxiety
disorders, the most consistent transdiagnostic abnormalities in task-related brain activity
converge in regions that are primarily associated with inhibitory control and salience
processing. Targeting these shared neural phenotypes could potentially mitigate the risk of
affective morbidity in the general population and improve outcomes in clinical populations.
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M ood disorders (major depressive disorder and bipo-
lar disorder), posttraumatic stress disorder, and
anxiety disorders (generalized anxiety disorder,

panic disorder, agoraphobia, and specific and social phobia)
are highly comorbid1 and collectively account for more than
65% of nonfatal disease burden attributable to psychiatric
disorders.2 Up to 90% of patients with an anxiety disorder
meet criteria for a concurrent mood disorder,2,3 and as many
as 70% of individuals with mood disorders meet criteria for
an anxiety disorder during their lifetime.4,5 Negative affec-
tive states are shared and central clinical features of these
disorders,6 including bipolar disorder, where depressive
symptoms are the dominant psychopathology.7

Meta-analyses of brain imaging studies on mood, post-
traumatic stress, and anxiety disorders have shown that
each of these disorders is associated with abnormalities in
task-related brain engagement (summarized in eTable 1 in
the Supplement). The findings of these diagnosis-specific
meta-analyses show conspicuous divergence (eTable 1 in the
Supplement) that has been attributed to low numbers of
contributing studies, reporting bias from region-of-interest
(ROI) analyses, and inadequate correction for multiple
comparisons.8,9 Of note, methodological improvements over
time have led to a progressive reduction in the number
clusters of case-control differences reported in diagnosis-
specific meta-analyses (eFigure 1 in the Supplement).
Using data from task-related functional magnetic resonance
imaging (fMRI) studies published in the last 15 years, we
demonstrated that diagnostic differences in the brain
regions implicated in mood and anxiety disorders largely
reflected the association with ROI analyses.9 By contrast,
when only whole-brain analyses were considered, there
were large pairwise correlations between the diagnosis-
specific profiles (ρ range, 0.79-0.82; all P < .001).9

Here, we extend this line of research in 2 distinct ways.
First, we sought to identify brain regions where aberrant
task-related activation was most likely to show transdiag-
nostic convergence across major depressive disorder, bipolar
disorder, and anxiety and posttraumatic stress disorders.
To achieve this, we capitalized on activation likelihood
estimation (ALE) meta-analytic tools10-13 to synthesize
coordinates of case-control differences in what is, to our
knowledge, the largest sample of fMRI articles comprising
the body of the relevant literature over the last 15 years.
Second, we anchored the analysis plan to the Research
Domain Criteria (RDoC) framework14 proposed by the US
National Institute of Mental Health. The RDoC framework
is the best approximation to a criterion approach to the
classification of the array of activation tasks used in the pri-
mary studies and enables a principled interpretation of
results in terms of dysfunction in clearly defined cognitive
processes. Based on current neurobiological models,15,16

we predicted that transdiagnostic clusters of aberrant brain
activity would converge in regions within the prefrontal,
insular, and anterior cingulate cortex and in subcortical
regions (particularly the amygdala/hippocampus and
striatum) that support the adaptive regulation of cognition
and affect.

Method

Literature Search and Article Eligibility
We applied the Preferred Reporting Items for Systematic
Reviews and Meta-analyses criteria (http://www.prisma-
statement.org/) to identify articles that used whole-brain
analyses of task-related fMRI to compare healthy adults with
adult patients who received a diagnosis of major depressive
disorder, bipolar disorder, generalized anxiety disorder, panic
disorder, agoraphobia, specific and social phobias, and
posttraumatic stress disorder (details of the search and article
eligibility criteria in the eMethods and eFigure 2 in the
Supplement). Because we used data from published studies,
no institutional review board approval was sought and patient
consent was not obtained.

Database Construction
We use the term article to denote the published manuscript
and the term experiment to denote the coordinates of case-
control differences reported in each article. Accordingly, from
each article, we extracted coordinates of case-control differ-
ences derived from whole-brain analyses only. These were then
coded according to the strength of the magnetic field of the
scanner, the diagnostic classification system, symptom sever-
ity, the direction of change in brain activity in patients com-
pared with healthy individuals (hypoactivation or hyperacti-
vation), and the corresponding RDoC domain and construct.
The coding of tasks according to their corresponding RDoC do-
main and construct is described in the eMethods and shown
in eTable 2 in the Supplement. For example, tasks such as the
n-back and the Sternberg were assigned to the construct of
working memory and the domain of cognitive systems whereas
various facial affect processing tasks were assigned to the con-
struct of social communication and the domain of social pro-
cesses. This allowed us to create 3 groupings of tasks labeled
by their type (eg, facial affect processing) and their RDoC con-
struct and domain. For each article, the symptom severity of
the clinical sample was coded based on the mean psychopa-
thology rating reported. To accommodate the use of different
instruments across studies and clinical populations, symp-
tom levels were labeled as minimal/mild, moderate, or se-
vere (details in eMethods in the Supplement). Furthermore,

Key Points
Question Is the clinical overlap seen in major depressive disorder,
bipolar disorder, anxiety disorders, and posttraumatic stress
disorder reflected at the neurobiological level?

Findings In this meta-analysis of 226 task-related functional
imaging studies, transdiagnostic clusters of hypoactivation were
identified in the inferior prefrontal cortex/insula, inferior parietal
lobule, and putamen.

Meaning Across mood and anxiety disorders, the most consistent
transdiagnostic abnormalities in task-related brain activity
converge in regions that are primarily associated with inhibitory
control and salience processing.
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for each experiment, but separately for patient and control
groups, we coded their diagnostic status, sample size, age, and
sex (percentage of men). In patients, medication status was
coded as the percentage of patients receiving any psychotro-
pic medication in each study sample. Further details of the
database construction are provided in the eMethods in the
Supplement.

Activation Likelihood Estimation
We used ALE, implemented in MATLAB (MathWorks), to test
whether the whole-brain coordinates of case-control differ-
ences across experiments and disorders converged into dis-
crete clusters with a nonrandom spatial distribution.10-13 The
fundamental assumption of the ALE is that each voxel has the
same a priori chance of differentiating patients from control
individuals (null hypothesis). Consequently, ROI analyses were
excluded because they violate this assumption and their in-
clusion would artificially bias results in favor of voxels within
these regions. The main outcome of the ALE analysis are
the clusters (ie, grouping of brain regions) in which the
coordinates of the experiments converge. Per best-practice
standards,10-13 statistically significant clusters were identi-
fied using a cluster-level familywise error–corrected thresh-
old of P less than .05 (cluster-forming threshold at voxel-
level P < .001). Additionally, for each suprathreshold cluster,
we extracted the per voxel probability of functional change
from the modeled activation maps. These values represent the
probability of identifying a functional change for a mean voxel
within the clusters derived from the modeled activation maps.
Details of the procedures involved are described in the
eMethods in the Supplement.

We analyzed coordinates of hypoactivation or hyperacti-
vation in patients compared with healthy individuals sepa-
rately to enhance interpretability. First, we identified supra-
threshold clusters of hypoactivation and hyperactivation by
pooling coordinates from all diagnoses and tasks and then con-
ducted follow-up analyses to identify the effect of modera-
tors. For the follow-up analyses, we extracted per-voxel prob-
abilities of functional change for each cluster and conducted
nonparametric Kruskal-Wallis tests and Spearman correla-
tions to calculate the contribution of age, sex, RDoC domain/
construct, diagnosis, symptom severity, and medication.

In generating the modeled activation maps, we pooled co-
ordinates across diagnoses for 2 reasons. First, the disorders
considered here are highly comorbid and hence the pooled
analyses accommodate uncertainty about their symptomatic
and syndromal boundaries. Moreover, comorbidity is not al-
ways reported in primary studies and therefore it is difficult
to estimate its prevalence in the samples examined and its po-
tential contribution to the neuroimaging results. Second, pool-
ing results across diagnoses balances power, specificity, and
sensitivity and allows for a data-driven quantification of the
diagnosis-specific contribution to each suprathreshold clus-
ter. We conducted supplemental diagnosis-specific analyses,
which are presented in the eMethods and eResults in the
Supplement.

In generating the modeled activation maps, we pooled co-
ordinates from all the tasks used in the primary experiments

based on 2 considerations. First, traditional neuropsycho-
logic formulations tend to consider cognitive tasks as rela-
tively specific to a particular process. Advances in cognitive
and affective neuroscience have led to the recognition that the
association between brain structure and function is pluripo-
tent (one-to-many) and degenerate (many-to-one).17,18 There-
fore, any given task engages brain regions outside those
predicted by the cognitive mechanisms attributed to that
particular task, while a single brain area may be activated by
disparate tasks that may not share cognitive components.17,18

Our approach accommodates pluripotency and offers a more
realistic representation of the relevance of cognitive domains
to case-control differences. Following the identification of su-
prathreshold clusters from the pooled analyses, we esti-
mated the contribution of tasks to each cluster. For these
follow-up analyses, tasks were grouped according to their as-
signed RDoC domain/construct; the use of the RDoC frame-
work provided an organizing principle for the multitude of
tasks used in the primary studies. Compared with other clas-
sifications that are primarily driven by convention, the RDoC
framework has a clearly defined origin and rationale.14

Finally, we used an alternate meta-analytic algorithm to
confirm the reproducibility of the results of the main analy-
ses and conducted several ancillary meta-analyses focusing on
each diagnosis separately and using alternate classification of
tasks (described in the eMethods, eResults, and eTable 8 in the
Supplement).

Results
Samples and Experiments
In total, 226 articles were selected (major depressive disor-
der, 83; bipolar disorder, 66; posttraumatic stress disorder, 35;
generalized anxiety disorder, 6; panic disorder and agorapho-
bia, 6; specific phobias, 8; and social phobia, 22) comprising
observations from 4507 patients and 4755 healthy individu-
als. Full citations and details of the selected articles are pro-
vided in eTables 3 to 5 in the Supplement. Given the small num-
ber of studies on generalized anxiety disorder, panic disorder,
agoraphobia, and specific and social phobias, we used a single
coding of “anxiety disorders” for experiments arising from
these patient groups. The selected articles yielded a total of
367 experiments (major depressive disorder, 149; bipolar dis-
order, 103; posttraumatic stress disorder, 55; and anxiety dis-
orders, 60) (Table). The percentage of patients receiving medi-
cation differed by diagnosis (χ2

3 = 77.03; P < .001), being higher
for bipolar disorder and major depressive disorder followed by
posttraumatic stress disorder and anxiety disorders (eTable 6
in the Supplement). There were no statistical differences in
the number of experiments per diagnosis (F3 = 2.54; P = .10)
or per RDoC domain (F4 = 0.60; P = .66) and no significant
case-control differences in age or sex.

Activation Likelihood Estimation
Coordinates of hypoactivation (179 experiments) or hyperac-
tivation (188 experiments) in patients compared with healthy
individuals were entered in separate meta-analyses. Each
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meta-analysis had more than 80% power to detect clusters of
brain regions if they showed convergent case-control differ-
ences in at least 10 experiments.10-13 Robust estimation of mod-
erator effects was possible for age, sex, strength of the mag-
netic field of the scanner, symptom severity, and medication
status. The peak coordinates of the suprathreshold clusters are
presented in Talairach space.

Transdiagnostic Clusters of Hypoactivation in Patients
We identified 3 reproducible (eFigure 4 in the Supplement)
transdiagnostic clusters of hypoactivation in patients com-
pared with healthy individuals centered on the right inferior
prefrontal cortex/insula (peak coordinates: x = 40, y = 30,
z = −10; volume, 2120 mm3), the right inferior parietal lobule
(peak coordinates: x = 38, y = −48, z = 46; volume, 1224 mm3),
and the right putamen (peak coordinates: x = 24, y = 8, z = −6;
volume, 888 mm3) (Figure 1A; eFigure 3A in the Supple-
ment). The effects of the moderator variables, including medi-
cation status and symptom severity, were not significant for
any cluster (eResults in the Supplement).

There was no significant association of diagnosis with the
prefrontal/insula (χ2

3 = 6.22; P = .10) and inferior parietal clus-
ters (χ2

3 = 3.54; P = .31); an association of diagnosis was noted
for the putamen (χ2

3 = 8.66; P = .03), for which the contribu-
tion of bipolar disorder (72.17%) was greater than that of ma-
jor depressive disorder (17.35%; z3 = 2.28; P = .02), posttrau-
matic stress disorder (4.55%; z3 = 1.82; P = .06) and anxiety
disorders (5.93%; z3 = 2.07; P = .03); all other pairwise com-
parisons were not significant.

Differences in the contribution of RDoC domains/
constructs did not reach statistical significance for any clus-
ter, although processes associated with cognitive systems
(Figure 1B), and particularly the construct of cognitive con-
trol, made the largest contribution to each cluster (eTable 7 in
the Supplement). Of note, hypoactivation in patients in the
right inferior frontal gyrus/insula was also identified in an an-
cillary meta-analysis restricted only to tasks that involve
affective (ie, acute or potential threat, reward attainment,
approach motivation, and frustrative nonreward) and social
(ie, social communication and perception of threat) process-

ing (eResults in the Supplement), thus confirming the impor-
tance of this cluster across multiple domains of cognition.
No additional diagnosis-specific clusters were identified
(eResults in the Supplement).

Transdiagnostic Clusters of Hyperactivation in Patients
Despite adequate power, there were no statistically signifi-
cant clusters of hyperactivation in patients compared
with healthy individuals at cluster-level familywise error–
corrected threshold of P less than .05 (cluster-forming
threshold at voxel-level P < .001). At the same threshold, no
suprathreshold clusters were detected when we repeated the
analyses including only those experiments involving affec-
tive and social processing (eResults in the Supplement). No
diagnosis-specific clusters were identified either (eResults in
the Supplement). This was unexpected given that current
models emphasize hyperactivation, primarily during the
processing of emotionally valenced stimuli, in the patient
populations considered here.15,16

Clusters of hyperactivation could only be detected using
uncorrected voxel-level thresholding (P < .01) combined with
an extent threshold of greater than 200 mm3. This level of sta-
tistical inference increases sensitivity at the cost of consis-
tency because it magnifies contributions originating from only
a few studies; nevertheless, it can still be considered accept-
able if more than 20 experiments are modeled, as is the case
here.10-13 The clusters thus identified were centered in the left
amygdala/parahippocampal gyrus (peak coordinates: x = −22,
y = −2, z = −15; volume, 2208 mm3), the left thalamus (peak
coordinates: x = −2, y = −12, z = 4; volume, 2008 mm3) and
the perigenual/dorsal anterior cingulate cortex (peak coordi-
nates: x = 0, y = 34, z = 12; volume, 1904 mm3) (Figure 2A;
eFigure 3B in the Supplement). For the latter cluster, there was
a negative correlation with the percentage of men (ρ = −0.68;
P = .004), but no other moderator effect (including medica-
tion and symptom severity) was significant for this or the other
clusters (details in the eResults in the Supplement). There was
no significant difference in the degree to which each diagno-
sis contributed to the left amygdala/parahippocampal gyrus
(χ2

3 = 2.13; P = .54), the left thalamus (χ2
3 = 1.26; P = .73), or the

Table. Experiments and Samples Included in the Databasea

Diagnosis
Experiments,
Total No.

Patients Healthy Individuals

Sample, No. Age, Mean (SD), y Men, Mean (SD), % Sample, No. Age, Mean (SD), y Men, Mean (SD), %
MDD 149b 1656 36.2 (9.85) 41 (17) 1759 33.7 (9.41) 43 (15)

BD 103c 1486 37.9 (10.52) 48 (21) 1642 36.4 (10.26) 47 (19)

PTSD 55d 557 35.0 (8.65) 44 (40) 574 34.5 (8.25) 43 (40)

ANX 60e 808 29.6 (7.4) 38 (23) 780 28.96 (7.07) 39 (23)

Abbreviations: ANX, anxiety disorders; BD, bipolar disorder; CD, cross domain;
CS, cognitive systems; MDD, major depressive disorders; NVS, negative valence
systems; PVS, positive valence systems; PTSD, posttraumatic stress disorder;
RDoC, research domain criteria; SP, social processes.
a There were no experiments that could be mapped to the domain of arousal.

Experiment indicates set of coordinates of case-control differences originating
from specific task contrasts; some published articles contributed more than 1
experiment (details in the eMethods and eTables 2-5 in the Supplement).

b Of the 149 MDD experiments, CS was studied in 27; NVS, 41; PVS, 43; SP, 17;

and CD, 21.
c Of the 103 BD experiments, CS was studied in 49; NVS, 20; PVS, 11; SP, 7;

and CD, 16.
d Of the 55 PTSD experiments, CS was studied in 13; NVS, 12; PVS, 1; SP, 14;

and CD, 14.
e Of the 60 ANX experiments, CS was studied in 2; NVS, 20; PVS, 1; SP, 15;

and CD, 22.
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perigenual/dorsal anterior cingulate cortex (χ2
3 = 3.06; P = .38).

Differences in the contribution of RDoC domains did not reach
statistical significance for any cluster, although experiments
associated with negative valence systems (Figure 2B), and par-
ticularly the construct of acute threat (eTable 7 in the Supple-
ment), made the largest numerical contribution to each of these
3 clusters.

Discussion
Meta-analyses of 367 task-related fMRI experiments in mood
disorders, posttraumatic stress disorder, and anxiety disor-
ders, comprising data from 4507 patients and 4755 control
individuals, detected statistically robust transdiagnostic
clusters of hypoactivation in the inferior prefrontal cortex/
insula, the inferior parietal lobule, and the putamen. These
regions are part of a right-dominant brain system that
supports contextual shifting and stopping of mental opera-
tions and behavioral responses.19-26 Specifically, the right
inferior prefrontal cortex is critically involved in the inhibi-
tion of contextually inappropriate cognitive, affective, and
motor responses19-21; similarly, the putamen, particularly on
the right, is essential for terminating contextually inappro-
priate motor and cognitive processes.22 The anterior

insula23,24 and the right inferior parietal lobule25,26 partici-
pate in the generation of salience-related signals that either
initiate or terminate the engagement of attentional and
working memory networks in response to changing
demands. The insula, and particularly the anterior portion
on the right, is thought to have a major role in integrating
interoceptive information with information from other brain
regions, thus supporting the formation of the conscious
experience of an embodied self.27,28 This awareness of nega-
tive emotional states may act as a salient trigger for the
insula and the adjacent inferior frontal regions to engage
mechanisms of cognitive control. Notably, experiments
involving domains of nonaffective cognition, affective pro-
cessing, and social cognition showed a similar range of con-
tributions to these clusters of hypoactivation (respective
range: 28%-50% and 29%-56%) (Figure 1B; eTable 7 in the
Supplement). We therefore infer that the dominant abnor-
mality in mood disorders, posttraumatic stress disorder, and
anxiety disorders involves a diagnosis-general disruption in
salience processing (including interoceptive processing) and
inhibitory control. These results contradict early hypoth-
eses, which stipulated that affective morbidity results from
right-sided fronto-parietal hyperactivity in response to
negative/withdrawal stimuli,29 but are in line with evidence
that emphasizes the role of deficient cognitive control.30-32

Figure 1. Transdiagnostic Clusters of Hypoactivation in Patients Relative to Healthy Individuals
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putamen. B, Percentage contribution of each research domain criteria (RDoC)
to each cluster. Additional details are in eTable 7 in the Supplement.
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Further support derives from studies showing that deficits in
the ability to stop and shift ongoing affective states and
thoughts are the most significant predictors of affective
symptoms and syndromes.33-35 Neurocognitive studies in
mood and anxiety disorders also indicate a general disrup-
tion in cognitive control because they consistently report
deficits of large effect size in stopping and shifting responses
in a range of tasks.32,36,37 Thus, impaired engagement of
brain regions that subserve salience processing and inhibi-
tory control present a plausible explanatory mechanism for
the affective and nonaffective abnormalities observed in
patients. In a separate meta-analysis38 of functional neuro-
imaging studies that was limited only to tasks of cognitive
control, hypoactivation in the right inferior prefrontal/
insular cortex was also reported as a transdiagnostic feature
of schizophrenia, bipolar disorder, major depressive disor-
der, anxiety disorders, and substance use.38 When consid-
ered together, these findings point to the possibility that
abnormalities in brain regions involved in switching and
stopping may underpin the vulnerability to develop any
and all forms of psychopathology. Interestingly, similar argu-
ments have been put forward for a single dimension of psy-
chopathology, termed factor p, as a main predictor of indi-
viduals’ liability for all mental disorders.39 The relationship
between the p factor and disrupted engagement in salience/

inhibitory control regions presents an intriguing avenue for
future research.

We also identified 3 transdiagnostic clusters of hyperac-
tivation in patients compared with healthy individuals cen-
tered in the left amygdala/parahippocampal gyrus, the left
thalamus, and the perigenual/dorsal anterior cingulate cor-
tex that were attributable mainly to experiments mapping to
RDoC domains relating to affective and social processing
(Figure 2B). The clusters identified appear plausible because
they comprised regions consistently associated with
affective morbidity.15,16 The perigenual/dorsal anterior cin-
gulate cortex is known to exert a regulatory influence on
emotional experience and appraisal40 while the amygdala
and parahippocampal gyrus, particularly on the left, are
involved in emotional memory formation and retrieval.41

The dorsal anterior cingulate cortex is also closely involved
in the generation of internal autonomic and their associated
expressive emotional responses.42 Its relative hyperactiva-
tion in patients is consistent with the notion of increased
arousal in response to stress that may be a trait feature of
mood and anxiety disorders but may also reflect increased
stress response to the fMRI tasks.43

Notwithstanding, these clusters were only detectable at a
liberal statistical threshold, indicating greater inconsistency
across primary studies that may indicate that hyperactivation

Figure 2. Transdiagnostic Clusters of Hyperactivation in Patients Compared With Healthy Individuals
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hyperactivation in the left amygdala/parahippocampal gyrus (PHG), the left
thalamus, and the perigenual/dorsal anterior cingulate cortex (dACC).
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in patients compared with healthy individuals may be more
sensitive to variations in fMRI task design (eg, type or dura-
tion of stimuli or task instructions) and neuroimaging acqui-
sition and analysis parameters. Detailed investigations that
could directly address these issues would require more data
than are currently available in the entire literature corpus.

Limitations
We placed substantial emphasis on the rigor and reproduc-
ibility of our methods to address ongoing concerns about the
disparity in the number and localization of clusters in previ-
ous meta-analyses (eTable 1 in the Supplement). To further
enhance reproducibility, we classified experiments based on
the RDoC framework, which offers a structured approach to
classification for fMRI tasks in future studies. We only
included studies in adults, and therefore these findings may
not generalize to pediatric or geriatric groups. We did not
consider studies that failed to find case-control differences
because such practice could only be justified if negative
studies were sufficiently powered. We did not find an effect
of symptom severity on the transdiagnostic clusters. This
observation should be viewed with caution because of the
variable instruments used to rate psychopathology and the
reliance on group means from each study sample. Medica-
tion status did not have a statistically significant moderator
association with the results reported. Medication has been
shown to have mostly normalizing effects44 and may have

attenuated case-control differences in the primary studies.
We examined disorders with significant symptomatic and
syndromal overlap for which we had comparable amount of
data across diagnoses. We decided to exclude task-related
fMRI articles on schizophrenia because the disproportion-
ately larger number of studies (>250)9 would have skewed
the results. Given the observed power in this study, the
results are statistically robust, but as the literature expands
it is possible that additional transdiagnostic or disease spe-
cific clusters may emerge.

Conclusions
This meta-analysis of what is, to our knowledge, the largest
data set of fMRI studies currently available identified
reduced engagement of brain regions associated with inhibi-
tory control and salience processing as the most consistent
neurobiological feature in mood disorders, posttraumatic
stress disorder, and anxiety disorders. These shared brain
phenotypes have the potential to serve as targets for inter-
ventions aiming to improve clinical outcomes and reduce or
prevent affective morbidity in the general population. Track-
ing the trajectory of disruption in these regions across devel-
opment could provide invaluable information regarding
their timing and their association with emerging psychopa-
thology and psychiatric nosology.
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