000866114 001__ 866114 000866114 005__ 20220930130222.0 000866114 0247_ $$2doi$$a10.3390/cryst9110580 000866114 0247_ $$2Handle$$a2128/23229 000866114 0247_ $$2altmetric$$aaltmetric:69966903 000866114 0247_ $$2WOS$$aWOS:000502270800035 000866114 037__ $$aFZJ-2019-05333 000866114 082__ $$a540 000866114 1001_ $$0P:(DE-Juel1)130498$$aAl-Zubi, Ali$$b0 000866114 245__ $$aElectronic Structure of oxygen deficient SrTiO3 and Sr2TiO4 000866114 260__ $$aBasel$$bMDPI$$c2019 000866114 3367_ $$2DRIVER$$aarticle 000866114 3367_ $$2DataCite$$aOutput Types/Journal article 000866114 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600067641_28826 000866114 3367_ $$2BibTeX$$aARTICLE 000866114 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000866114 3367_ $$00$$2EndNote$$aJournal Article 000866114 520__ $$aThe conductive behavior of the perovskite SrTiO 3 is strongly influenced by the presence of oxygen vacancies in this material, therefore the identification of such defects with spectroscopic methods is of high importance. We use density functional theory to characterize the defect-induced states in SrTiO 3 and Sr 2 TiO 4 . Their signatures at the surface, the visibility for scanning tunneling spectroscopy and locally conductive atomic force microscopy, and the core-level shifts observed on Ti atoms in the vicinity of the defect are studied. In particular, we find that the exact location of the defect state (e.g., in SrO or TiO 2 planes relative to the surface) are decisive for their visibility for scanning-probe methods. Moreover, the usual distinction between Ti 3+ and Ti 2+ species, which can occur near defects or their aggregates, cannot be directly translated in characteristic shifts of the core levels. The width of the defect-induced in-gap states is found to depend critically on the arrangement of the defects. This also has consequences for the spectroscopic signatures observed in so-called resistive switching phenomena 000866114 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0 000866114 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1 000866114 536__ $$0G:(DE-Juel1)jiff13_20131101$$aMagnetic Anisotropy of Metallic Layered Systems and Nanostructures (jiff13_20131101)$$cjiff13_20131101$$fMagnetic Anisotropy of Metallic Layered Systems and Nanostructures$$x2 000866114 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, Gustav$$b1$$eCorresponding author$$ufzj 000866114 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b2$$ufzj 000866114 770__ $$aElectronic Phenomena of Transition Metal Oxides 000866114 773__ $$0PERI:(DE-600)2661516-2$$a10.3390/cryst9110580$$n11$$p580$$tCrystals$$v9$$x2073-4352$$y2019 000866114 8564_ $$uhttps://juser.fz-juelich.de/record/866114/files/Invoice_MDPI_crystals-632877.pdf 000866114 8564_ $$uhttps://juser.fz-juelich.de/record/866114/files/Invoice_MDPI_crystals-632877.pdf?subformat=pdfa$$xpdfa 000866114 8564_ $$uhttps://juser.fz-juelich.de/record/866114/files/crystals-09-00580.pdf$$yOpenAccess 000866114 8564_ $$uhttps://juser.fz-juelich.de/record/866114/files/crystals-09-00580.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000866114 8767_ $$8crystals-632877$$92019-11-01$$d2019-11-04$$eAPC$$jZahlung erfolgt 000866114 909CO $$ooai:juser.fz-juelich.de:866114$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery 000866114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b1$$kFZJ 000866114 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b2$$kFZJ 000866114 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0 000866114 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1 000866114 9141_ $$y2019 000866114 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000866114 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000866114 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCRYSTALS : 2017 000866114 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000866114 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000866114 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000866114 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000866114 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000866114 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000866114 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review 000866114 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000866114 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000866114 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List 000866114 920__ $$lyes 000866114 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x0 000866114 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x1 000866114 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2 000866114 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3 000866114 980__ $$ajournal 000866114 980__ $$aVDB 000866114 980__ $$aI:(DE-Juel1)PGI-1-20110106 000866114 980__ $$aI:(DE-Juel1)IAS-1-20090406 000866114 980__ $$aI:(DE-82)080009_20140620 000866114 980__ $$aI:(DE-82)080012_20140620 000866114 980__ $$aAPC 000866114 980__ $$aUNRESTRICTED 000866114 9801_ $$aAPC 000866114 9801_ $$aFullTexts