000866148 001__ 866148
000866148 005__ 20240610120431.0
000866148 0247_ $$2doi$$a10.1038/s41567-018-0170-4
000866148 0247_ $$2ISSN$$a1745-2473
000866148 0247_ $$2ISSN$$a1745-2481
000866148 0247_ $$2Handle$$a2128/23217
000866148 0247_ $$2altmetric$$aaltmetric:31496491
000866148 0247_ $$2pmid$$apmid:30906420
000866148 0247_ $$2WOS$$aWOS:000443584000029
000866148 037__ $$aFZJ-2019-05344
000866148 082__ $$a530
000866148 1001_ $$00000-0002-0191-0749$$aBeroz, Farzan$$b0
000866148 245__ $$aVerticalization of bacterial biofilms
000866148 260__ $$aBasingstoke$$bNature Publishing Group$$c2018
000866148 3367_ $$2DRIVER$$aarticle
000866148 3367_ $$2DataCite$$aOutput Types/Journal article
000866148 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572954535_25345
000866148 3367_ $$2BibTeX$$aARTICLE
000866148 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866148 3367_ $$00$$2EndNote$$aJournal Article
000866148 520__ $$aBiofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modelling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an ‘inverse domino effect’. The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length
000866148 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000866148 588__ $$aDataset connected to CrossRef
000866148 7001_ $$0P:(DE-HGF)0$$aYan, Jing$$b1
000866148 7001_ $$0P:(DE-HGF)0$$aMeir, Yigal$$b2
000866148 7001_ $$0P:(DE-Juel1)171489$$aSabass, Benedikt$$b3$$eCorresponding author
000866148 7001_ $$00000-0002-9670-0639$$aStone, Howard A.$$b4
000866148 7001_ $$0P:(DE-HGF)0$$aBassler, Bonnie L.$$b5
000866148 7001_ $$0P:(DE-HGF)0$$aWingreen, Ned S.$$b6
000866148 773__ $$0PERI:(DE-600)2206346-8$$a10.1038/s41567-018-0170-4$$gVol. 14, no. 9, p. 954 - 960$$n9$$p954 - 960$$tNature physics$$v14$$x1745-2481$$y2018
000866148 8564_ $$uhttps://juser.fz-juelich.de/record/866148/files/s41567-018-0170-4.pdf$$yRestricted
000866148 8564_ $$uhttps://juser.fz-juelich.de/record/866148/files/nihms-967461.pdf$$yOpenAccess
000866148 8564_ $$uhttps://juser.fz-juelich.de/record/866148/files/s41567-018-0170-4.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866148 8564_ $$uhttps://juser.fz-juelich.de/record/866148/files/nihms-967461.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866148 909CO $$ooai:juser.fz-juelich.de:866148$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866148 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171489$$aForschungszentrum Jülich$$b3$$kFZJ
000866148 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000866148 9141_ $$y2019
000866148 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866148 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866148 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bNAT PHYS : 2017
000866148 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT PHYS : 2017
000866148 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866148 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866148 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866148 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866148 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866148 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866148 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866148 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866148 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866148 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000866148 9801_ $$aFullTexts
000866148 980__ $$ajournal
000866148 980__ $$aVDB
000866148 980__ $$aUNRESTRICTED
000866148 980__ $$aI:(DE-Juel1)ICS-2-20110106
000866148 981__ $$aI:(DE-Juel1)IBI-5-20200312
000866148 981__ $$aI:(DE-Juel1)IAS-2-20090406