001     866148
005     20240610120431.0
024 7 _ |a 10.1038/s41567-018-0170-4
|2 doi
024 7 _ |a 1745-2473
|2 ISSN
024 7 _ |a 1745-2481
|2 ISSN
024 7 _ |a 2128/23217
|2 Handle
024 7 _ |a altmetric:31496491
|2 altmetric
024 7 _ |a pmid:30906420
|2 pmid
024 7 _ |a WOS:000443584000029
|2 WOS
037 _ _ |a FZJ-2019-05344
082 _ _ |a 530
100 1 _ |a Beroz, Farzan
|0 0000-0002-0191-0749
|b 0
245 _ _ |a Verticalization of bacterial biofilms
260 _ _ |a Basingstoke
|c 2018
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1572954535_25345
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms of rod-shaped bacteria were observed at single-cell resolution and shown to develop from a disordered, two-dimensional layer of founder cells into a three-dimensional structure with a vertically aligned core. Here, we elucidate the physical mechanism underpinning this transition using a combination of agent-based and continuum modelling. We find that verticalization proceeds through a series of localized mechanical instabilities on the cellular scale. For short cells, these instabilities are primarily triggered by cell division, whereas long cells are more likely to be peeled off the surface by nearby vertical cells, creating an ‘inverse domino effect’. The interplay between cell growth and cell verticalization gives rise to an exotic mechanical state in which the effective surface pressure becomes constant throughout the growing core of the biofilm surface layer. This dynamical isobaricity determines the expansion speed of a biofilm cluster and thereby governs how cells access the third dimension. In particular, theory predicts that a longer average cell length yields more rapidly expanding, flatter biofilms. We experimentally show that such changes in biofilm development occur by exploiting chemicals that modulate cell length
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yan, Jing
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meir, Yigal
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sabass, Benedikt
|0 P:(DE-Juel1)171489
|b 3
|e Corresponding author
700 1 _ |a Stone, Howard A.
|0 0000-0002-9670-0639
|b 4
700 1 _ |a Bassler, Bonnie L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Wingreen, Ned S.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1038/s41567-018-0170-4
|g Vol. 14, no. 9, p. 954 - 960
|0 PERI:(DE-600)2206346-8
|n 9
|p 954 - 960
|t Nature physics
|v 14
|y 2018
|x 1745-2481
856 4 _ |u https://juser.fz-juelich.de/record/866148/files/s41567-018-0170-4.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866148/files/nihms-967461.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/866148/files/s41567-018-0170-4.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866148/files/nihms-967461.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866148
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171489
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b NAT PHYS : 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT PHYS : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21