000866149 001__ 866149
000866149 005__ 20240610120431.0
000866149 0247_ $$2doi$$a10.1016/j.devcel.2018.11.011
000866149 0247_ $$2ISSN$$a1534-5807
000866149 0247_ $$2ISSN$$a1878-1551
000866149 0247_ $$2Handle$$a2128/23219
000866149 0247_ $$2altmetric$$aaltmetric:52185540
000866149 0247_ $$2pmid$$apmid:30503751
000866149 0247_ $$2WOS$$aWOS:000453390700015
000866149 037__ $$aFZJ-2019-05345
000866149 082__ $$a610
000866149 1001_ $$0P:(DE-HGF)0$$aSchell, Christoph$$b0
000866149 245__ $$aARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier
000866149 260__ $$aNew York, NY$$bElsevier$$c2018
000866149 3367_ $$2DRIVER$$aarticle
000866149 3367_ $$2DataCite$$aOutput Types/Journal article
000866149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1572955932_25345
000866149 3367_ $$2BibTeX$$aARTICLE
000866149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866149 3367_ $$00$$2EndNote$$aJournal Article
000866149 520__ $$aPodocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion.
000866149 536__ $$0G:(DE-HGF)POF3-553$$a553 - Physical Basis of Diseases (POF3-553)$$cPOF3-553$$fPOF III$$x0
000866149 588__ $$aDataset connected to CrossRef
000866149 7001_ $$0P:(DE-Juel1)171489$$aSabass, Benedikt$$b1
000866149 7001_ $$0P:(DE-HGF)0$$aHelmstaedter, Martin$$b2
000866149 7001_ $$0P:(DE-HGF)0$$aGeist, Felix$$b3
000866149 7001_ $$0P:(DE-HGF)0$$aAbed, Ahmed$$b4
000866149 7001_ $$0P:(DE-HGF)0$$aYasuda-Yamahara, Mako$$b5
000866149 7001_ $$0P:(DE-HGF)0$$aSigle, August$$b6
000866149 7001_ $$0P:(DE-HGF)0$$aMaier, Jasmin I.$$b7
000866149 7001_ $$0P:(DE-HGF)0$$aGrahammer, Florian$$b8
000866149 7001_ $$0P:(DE-HGF)0$$aSiegerist, Florian$$b9
000866149 7001_ $$0P:(DE-HGF)0$$aArtelt, Nadine$$b10
000866149 7001_ $$0P:(DE-HGF)0$$aEndlich, Nicole$$b11
000866149 7001_ $$0P:(DE-HGF)0$$aKerjaschki, Dontscho$$b12
000866149 7001_ $$0P:(DE-HGF)0$$aArnold, Hans-Henning$$b13
000866149 7001_ $$0P:(DE-HGF)0$$aDengjel, Jörn$$b14
000866149 7001_ $$0P:(DE-HGF)0$$aRogg, Manuel$$b15
000866149 7001_ $$0P:(DE-HGF)0$$aHuber, Tobias B.$$b16$$eCorresponding author
000866149 773__ $$0PERI:(DE-600)2053870-4$$a10.1016/j.devcel.2018.11.011$$gVol. 47, no. 6, p. 741 - 757.e8$$n6$$p741 - 757.e8$$tDevelopmental cell$$v47$$x1534-5807$$y2018
000866149 8564_ $$uhttps://juser.fz-juelich.de/record/866149/files/1-s2.0-S1534580718309298-main.pdf$$yOpenAccess
000866149 8564_ $$uhttps://juser.fz-juelich.de/record/866149/files/1-s2.0-S1534580718309298-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866149 909CO $$ooai:juser.fz-juelich.de:866149$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866149 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171489$$aForschungszentrum Jülich$$b1$$kFZJ
000866149 9131_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000866149 9141_ $$y2019
000866149 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866149 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000866149 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866149 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000866149 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bDEV CELL : 2017
000866149 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866149 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866149 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866149 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866149 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866149 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bDEV CELL : 2017
000866149 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866149 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866149 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866149 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866149 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$kICS-2$$lTheorie der Weichen Materie und Biophysik$$x0
000866149 9801_ $$aFullTexts
000866149 980__ $$ajournal
000866149 980__ $$aVDB
000866149 980__ $$aUNRESTRICTED
000866149 980__ $$aI:(DE-Juel1)ICS-2-20110106
000866149 981__ $$aI:(DE-Juel1)IBI-5-20200312
000866149 981__ $$aI:(DE-Juel1)IAS-2-20090406