001     866149
005     20240610120431.0
024 7 _ |a 10.1016/j.devcel.2018.11.011
|2 doi
024 7 _ |a 1534-5807
|2 ISSN
024 7 _ |a 1878-1551
|2 ISSN
024 7 _ |a 2128/23219
|2 Handle
024 7 _ |a altmetric:52185540
|2 altmetric
024 7 _ |a pmid:30503751
|2 pmid
024 7 _ |a WOS:000453390700015
|2 WOS
037 _ _ |a FZJ-2019-05345
082 _ _ |a 610
100 1 _ |a Schell, Christoph
|0 P:(DE-HGF)0
|b 0
245 _ _ |a ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier
260 _ _ |a New York, NY
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1572955932_25345
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion.
536 _ _ |a 553 - Physical Basis of Diseases (POF3-553)
|0 G:(DE-HGF)POF3-553
|c POF3-553
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sabass, Benedikt
|0 P:(DE-Juel1)171489
|b 1
700 1 _ |a Helmstaedter, Martin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Geist, Felix
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Abed, Ahmed
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yasuda-Yamahara, Mako
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Sigle, August
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Maier, Jasmin I.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Grahammer, Florian
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Siegerist, Florian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Artelt, Nadine
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Endlich, Nicole
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Kerjaschki, Dontscho
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Arnold, Hans-Henning
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Dengjel, Jörn
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Rogg, Manuel
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Huber, Tobias B.
|0 P:(DE-HGF)0
|b 16
|e Corresponding author
773 _ _ |a 10.1016/j.devcel.2018.11.011
|g Vol. 47, no. 6, p. 741 - 757.e8
|0 PERI:(DE-600)2053870-4
|n 6
|p 741 - 757.e8
|t Developmental cell
|v 47
|y 2018
|x 1534-5807
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866149/files/1-s2.0-S1534580718309298-main.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866149/files/1-s2.0-S1534580718309298-main.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866149
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)171489
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-553
|2 G:(DE-HGF)POF3-500
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DEV CELL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b DEV CELL : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|k ICS-2
|l Theorie der Weichen Materie und Biophysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21