Home > Publications database > ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier > print |
001 | 866149 | ||
005 | 20240610120431.0 | ||
024 | 7 | _ | |a 10.1016/j.devcel.2018.11.011 |2 doi |
024 | 7 | _ | |a 1534-5807 |2 ISSN |
024 | 7 | _ | |a 1878-1551 |2 ISSN |
024 | 7 | _ | |a 2128/23219 |2 Handle |
024 | 7 | _ | |a altmetric:52185540 |2 altmetric |
024 | 7 | _ | |a pmid:30503751 |2 pmid |
024 | 7 | _ | |a WOS:000453390700015 |2 WOS |
037 | _ | _ | |a FZJ-2019-05345 |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Schell, Christoph |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a ARP3 Controls the Podocyte Architecture at the Kidney Filtration Barrier |
260 | _ | _ | |a New York, NY |c 2018 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1572955932_25345 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Podocytes, highly specialized epithelial cells, build the outer part of the kidney filtration barrier and withstand high mechanical forces through a complex network of cellular protrusions. Here, we show that Arp2/3-dependent actin polymerization controls actomyosin contractility and focal adhesion maturation of podocyte protrusions and thereby regulates formation, maintenance, and capacity to adapt to mechanical requirements of the filtration barrier. We find that N-WASP-Arp2/3 define the development of complex arborized podocyte protrusions in vitro and in vivo. Loss of dendritic actin networks results in a pronounced activation of the actomyosin cytoskeleton and the generation of over-maturated but less efficient adhesion, leading to detachment of podocytes. Our data provide a model to explain podocyte protrusion morphology and their mechanical stability based on a tripartite relationship between actin polymerization, contractility, and adhesion. |
536 | _ | _ | |a 553 - Physical Basis of Diseases (POF3-553) |0 G:(DE-HGF)POF3-553 |c POF3-553 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Sabass, Benedikt |0 P:(DE-Juel1)171489 |b 1 |
700 | 1 | _ | |a Helmstaedter, Martin |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Geist, Felix |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Abed, Ahmed |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Yasuda-Yamahara, Mako |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Sigle, August |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Maier, Jasmin I. |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Grahammer, Florian |0 P:(DE-HGF)0 |b 8 |
700 | 1 | _ | |a Siegerist, Florian |0 P:(DE-HGF)0 |b 9 |
700 | 1 | _ | |a Artelt, Nadine |0 P:(DE-HGF)0 |b 10 |
700 | 1 | _ | |a Endlich, Nicole |0 P:(DE-HGF)0 |b 11 |
700 | 1 | _ | |a Kerjaschki, Dontscho |0 P:(DE-HGF)0 |b 12 |
700 | 1 | _ | |a Arnold, Hans-Henning |0 P:(DE-HGF)0 |b 13 |
700 | 1 | _ | |a Dengjel, Jörn |0 P:(DE-HGF)0 |b 14 |
700 | 1 | _ | |a Rogg, Manuel |0 P:(DE-HGF)0 |b 15 |
700 | 1 | _ | |a Huber, Tobias B. |0 P:(DE-HGF)0 |b 16 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.devcel.2018.11.011 |g Vol. 47, no. 6, p. 741 - 757.e8 |0 PERI:(DE-600)2053870-4 |n 6 |p 741 - 757.e8 |t Developmental cell |v 47 |y 2018 |x 1534-5807 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866149/files/1-s2.0-S1534580718309298-main.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866149/files/1-s2.0-S1534580718309298-main.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866149 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)171489 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences |1 G:(DE-HGF)POF3-550 |0 G:(DE-HGF)POF3-553 |2 G:(DE-HGF)POF3-500 |v Physical Basis of Diseases |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b DEV CELL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b DEV CELL : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | 1 | _ | |0 I:(DE-Juel1)ICS-2-20110106 |k ICS-2 |l Theorie der Weichen Materie und Biophysik |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)ICS-2-20110106 |
981 | _ | _ | |a I:(DE-Juel1)IBI-5-20200312 |
981 | _ | _ | |a I:(DE-Juel1)IAS-2-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|