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Summary 

 

isease (AD) constitutes a step-wise structural and functional 

deterioration of some brain structures such as the hippocampus. Hippocampus 

atrophy, detected by structural MRI, is considered one of the , 

mentioned in the new AD diagnostic criteria by Dubois and colleagues in 2007. In 

previous studies, it was proposed that a possible dissimilar hippocampus grey 

matter subregional atrophy occurs along AD progression.  

 

In this project we were trying to investigate the differential hippocampus 

subregional mean Grey Matter Volume (GMV) affection in different diagnosis 

phenotypes of AD.  from the 

Neuroimaging Initiative (ADNI) database, divided according to the each subject 

probable diagnosis into 5 diagnosis groups representing different stages, starting 

from normal controls until a probable AD. Our hippocampus model was adapted 

from the work done by Plachti and colleagues in 2019, who parcellated the 

hippocampus into 3 clusters on each side based on multimodal Connectivity Based 

Parcellation (CBP). In this project, the mean GMV  T1-weighted, 3T 

structural MRI images, present on ADNI database, using Voxel Based Morphometry 

(VBM) was assessed, after employing a series of i -acquisition quality 

control steps. The results suggested that there was a differential hippocampus 

GMV atrophy in different subregions in various stages of AD. The Atrophy severity 

was possibly increasing with more advanced stages towards probable AD stage. 

Moreover, atrophy has been found dependent on the diagnostic stage on the right 

hippocampus. The most affected subregions by different stages of the disease on 

both hemispheres were the right, left intermediate and left posterior clusters. This 

study further bolsters some of similar previous studies, done on different 

hippocampus models, comparing hippocampus volumes along its longitudinal axis 

in different AD stage, which had similar results as ours. Moreover it opens the door 

towards further research of the most affected parts in each subregion, by using a 

hippocampus model with higher number of partitions along the anterior-posterior 

axis i.e. 7 to know more specifically where the volume change took place. 



Introduction 

 

isease 

isease (AD) is a neurodegenerative disease, characterized by a 

gradually developing brain pathology, which probably starts years to decades 

before the development of its clinical manifestations (McKhann et al., 1984; 

Peterson et al., 2009; Weiner et al., 2013). AD pathology starts with a serious of 

pathological microstructural changes namely Beta amyloid plaques and tau 

neurofibrillary tangles deposition combined with neuronal degeneration and 

synapse loss followed by structural brain changes including brain atrophy, as 

described in (Jack et al., 2008; 2009; Shaw, 2008; Weiner et al., 2013). These 

pathological changes are possibly correlated with the clinical manifestations, 

occurring in the disease, primarily in the form of dementia, which includes 

progressive memory decline as well as other cognitive functions, possibly 

accompanied by language disturbance and behavioral changes, disturbing daily-

living activities (McKhann et al., 1984).  

 

isease diagnosis phenotypes. 

sease diagnosis phenotypes represent different stages of the 

disease along its progression including non-demented groups, having subjective 

memory affection and/or objective memory concern, measured by 

neuropsychological tests and a demented group which is the clinical probable 

AD. A lot of methods could be employed which aid in classifying these diagnostic 

stages. 

 

The consortium of the National Institute of Neurological and Communicative 

d 

Disorders Association (ADRDA), established in 1984 (McKhann et al., 1984), 

represents one of the earliest attempts to set unified criteria for AD diagnosis 

groups classification, which clinical-pathological entity

et al. 2011), employing serious of clinical, neuropsychological, laboratory and 

imaging methods for AD diagnosis and classification. To evaluate the clinical 



aspect of Probable AD  neuropsychological tests such as Mini Mental 

State Examination (MMSE) are used. Imaging techniques such as EEG, CT, MRI 

and PET, as well as some laboratory tests possibly detect the pathological 

aspect ased on histopathological proof acquired from 

biopsy or autopsy.  

 

Initiatve (ADNI), which employed the NINCDS-ASRDA criteria as a method for 

differentiation of the demented AD group from the other 4 non-demented 

diagnosis groups (Cognitive Normal (CN), Subjective Memory  

Concern (SMC), Early Mild Cognitive Impairment (EMCI) and Late Mild 

Cognitive Impairment (LMCI), included in our study. In ADNI, AD group 

represents the clinical probable AD in NINCDS-ASRDA criteria. In this study all 

the 5 groups were included. 

 

Mild Cognitive Impairment (MCI) is a preliminary stage before AD, in which 

-

ADRDA criteria for clinical probable AD (Khan et al., 2016; Peterson et al., 1999; 

2001), in another words they are not demented and can perform their daily life 

activities. MCI subjects were found to be more deteriorating towards dementia 

than the normal aging i.e. CN subjects in terms of cognitive functions (Flicker, 

Ferris, & Reisberg, 1991; Peterson et al., 2001) and were even described as 

 between healthy aging and AD (Peterson et al., 

2001). MCI subjects, in general, are believed to have a bigger chance to develop 

AD with a yearly rate of 10% to 12% per year (Peterson et al., 1999) or even 

10% to 25% per year (Grand, Caspar & Macdonald, 2011) compared to normal 

controls with 1% to 2% per year (Peterson et al., 1999). MCI subjects are 

divided to EMCI and LMCI groups in ADNI according to their memory functions 

assessed by their performance in the Wechsler memory scale test  delayed 

recall. EMCI and LMCI have shown a rate of conversion of 10.8% and 24.9% 

respectively to AD dementia in a 6 years study (Jessen et al., 2014).  

 

Subjective Memory Concern (SMC) is a subjective report of memory affection 



from the subject or his close contact without any objective, quantified cognitive 

affection. Some studies have reported a possible risk for SMC subjects to 

develop AD dementia (Jessen, 2010; Reisberg, Shulman, Torossian, Leng & Zhu, 

2010). SMC subjects have shown a rate of conversion of 6.2% to AD dementia 

less than that of EMCI and LMCI subjects (Jessen et al., 2014). In a review study 

SMC subjects showed 1.5-3 times higher conversion rate to MCI or AD than the 

normal elderly controls (Mendonça, Alves, & Bugalho, 2015). 

 

Structural brain changes, an important maker of 

disease. 

Structural brain changes could help in early detection of a probable AD (Dubois 

et al., 2007; McKhann et al., 2011). Different imaging techniques like structural, 

functional MRI (sMRI, fMRI) as well as Positron Emission Tomography (PET) 

could be employed in giving a possibility to detect such structural as well as 

some functional changes taking place in AD, as hippocampal atrophy using 

sMRI, neural networks abnormalities with fMRI and amyloid plaques deposition 

-AA) 

(Jack et al., 2011; McKhann et al., 2011; Sperling 2011) as well as the 

International Working Group (IWG) (Dubois et al., 2007; 2010; 2014) represent 

recent initiatives, which aimed at incorporating imaging markers, as a possible 

way to track and early suspect AD through detecting the structural changes 

occurring in AD brains. 

 

sMRI is a non-invasive method, which helped in the in viv

structural brain changes as well as their quantification in the absence of any 

radiation exposure. sMRI, aided to detect changes in Grey Matter Volume (GMV) 

(Guo et al., 2014) and White Matter Volume (WMV) in AD (Guo et al., 2010), 

where the GMV loss reflects brain morphometric changes with regards to 

neuronal microstructure including neuronal bodies, synapses and dendrites 

(Vemuri & Jack, 2010; Uylings & de Brabander, 2002), while WMV loss is 

a common feature of AD, according to many studies (Chételat et al., 2007; 

Frisoni et al., 2002; Karas et al., 2003; 2004) and it correlated positively with 



the AD cognitive deterioration (Guo, X. et al., 2010; Guo, Y. et al., 2014). 

Moreover, sMRI can aid in the early diagnosis of MCI and AD and help monitor 

the disease progression (Vemuri & Jack, 2010). T1 weighted sequences in sMRI 

are the best sequence to detect atrophic changes in AD (Johnson, Fox, Sperling & 

Klunk, 2012) 

 

Structural brain changes in AD include, not only the global brain atrophy/ 

volume decrease (Double et al., 1996), but also that of some important brain 

structures such as the hippocampus (Baron et al., 2001; Hua et al., 2008). Brain 

Apostolova et al., 2011) and is 

correlated with the cognitive deterioration (Fox, Scahill, Crum & Rossor, 1999), 

with some AD biomarkers such as APOE gene (Agosta et al., 2009) and with 

some others in the Cerebro S including tau protein and 

amyloid plaques (Vemuri et al., 2009). The earliest affected brain structures in 

AD by the neurofibrillary tangles deposition are the Medial Temporal Lobe 

(MTL) structures (Arriagada, Growdon, Hedley-Whyte & Hyman, 1992; Braak & 

Braak 1991; Jack et al., 1999), among which the hippocampus seems to be the 

earliest affected even before AD clinical manifestations (Fox et al., 1996; Jack, 

Tangalos, 1992; Ridha et al., 2006). Hippocampus volume 

was found to be the most affected (Chételat et al., 2007; Frisoni et al., 2002), 

best discriminating CN and AD subjects (Jack et al., 1997) and predictive of MCI 

to AD conversion (Jack et al., 1999). Hippocampus volume is considered one of 

the most important existing structural biomarkers of AD, especially in the 

earliest stages of the disease (Jack et al., 2013; Moon, Lee & Choi, 2018) such as 

in SMC (Striepens et al., 2010) and MCI (Shi, Liu, Zhou, Yu & Jiang, 2009. 

Hippocampal atrophy in AD, however, has been found asymmetric (Shi, Liu, 

Zhou, Yu & Jiang, 2009) and differential along the medial-lateral axis (Zhao et 

al., 2019) and the anterolateral axis (Greene & Killiany, 2012; Martin, Smith, 

Collins, Schmitt & Gold, 2010) in different stages of the disease (schuff et al., 

2009).  

 

 



Hippocampus 

Hippocampus, an important and complex structure, which can be described as a 

functional polyhedron  owing to its responsibility for numerous behavioral 

functions, coordinating them in association with other brain cortical and 

subcortical structures (Genon, Reid, Langner, Amunts & Eickhoff, 2018). 

Hippocampus plays a crucial role in memory (Scoville & Milner, 1957; Zola-

Morgan, Squire & Amaral, 1986), including some aspects of declarative memory 

(Cohen & Squire, 1980; Eichenbaum, Otto & Cohen, 1992), more specifically the 

episodic memory (Bird & Burgess, 2008; Tulving, 2002; Vargha-Khadem, 1997), 

spatial memory (Abrahams et al., 1999; Burgess, Maguire , 2002; 

Maguire, 1999), autobiographic memory (Genon et al., 2018; 

Viard et al., 2007), relational memory (Eichenbaum & Cohen, 2001; Konkel, 2009) 

as well as explicit memory (Eichenbaum, 1999; Konkel, 2009). In addition, it is 

responsible for different learning processes namely encoding (Genon et al., 2018; 

Grady, McIntosh & Craik, 2003; Horner & Doeller, 2017), consolidation (Nadel & 

Moscovitch, 1997; Squire, Genzel, Wixted & Morris, 2015) and recollection (Genon 

et al., 2018; Konkel, 2009). Last but not least, hippocampus appears to be involved 

in some other higher, more complex cognitive functions including empathy, taking 

decisions, judgment, creativity and language utilization (Genon et al., 2018; Rubin, 

Schwarb, Lucas, Dulas & Cohen, 2017). For record, most of these functions are 

affected in AD, as previously mentioned in the previous section, which highlights 

the important relationship betwe ippocampal atrophy.  

 

Hippocampus organization. 

Right and left hippocampi are believed to be asymmetric with regards to 

structure and function (Maruszak & Thuret, 2014). Regarding the hippocampal 

volume, for example, there is discrepancy between the left and right 

hemispheres, where the right hemisphere appears to be larger (Maruszak & 

Thuret, 2014; Pedraza, Bowers & Gilmore, 2004). With regards to the functional 

difference, the right side of the hippocampus is believed to be involved more 

than the left side in the spatial memory, whereas the left hippocampus seem to 



be involved more in language processing (Duarte et al., 2014; Hutsler & Galuske, 

2003; Shipton et al., 2014). 

 

Hippocampus can be organized into either subfields on the medial-lateral axis 

or subregions on the anterior-posterior/longitudinal axis (Plachti et al., 2019). 

Hippocampal subfields  organization into Cornu Ammonis (CA) 1-4, dentate 

gyrus and subiculum, is based on cytoarchitechtonic histological mapping 

(Amunts et al., 2005; Zilles, Schleicher, Palomero-Gallagher & Amunts, 2002), 

which can be done in-vivo and ex-vivo on structural MRI images, using 

automatic (Van Leemput et al., 2009), semi-automatic (Pluta, Yushkevich, Das & 

Wolk, 2012) or manual segmentation (Peixoto-Santos et al., 2018) protocols. On 

the other hand hippocampal organization into subregions, namely head, body 

and tail, is frequently performed using electrophysiological techniques 

(Komorowski et al., 2013) or Connectivity Based Parcellation (CBP) (Robinson 

et al., 2014; Plachti et al., 2019). Hippocampal subregions are believed to be 

different with regards to the afferent, efferent neuronal networks in rats (Moser 

and Moser 1998), functional connectivity with other brain regions like the 

PreFrontal Cortex (PFC) and the Posterior Cingulate Cortex (PCC) (Zarei et al., 

2013), gene expression (Fanselov & Dong, 2010), as well as lipid composition 

and metabolism (Miranda et al., 2019). Moreover it is believed that a functional 

specialization lies along the longitudinal axis with a possible encoding - retrieval 

(Prince, 2005), emotion - cognition (Moser & Moser, 1998) and self-centric - 

world - centric (Plachti et al., 2019) functional gradients.  

 

Voxel Based Morphometry (VBM) 

In this project, VBM was used as a preprocessing method for the T1 weighted 

images to prepare them for further GMV extraction. VBM, which has been 

introduced first by Ashburner & Friston, 2000, Shah, Ebmeier, Glabus & Goodwin, 

1998; Wright et al., 1995; 1999, represents a simple and practical way to detect 

small-scale differences in the local structure of the brain, including for example 

brain atrophy, to highlight the neuroanatomical variations in brains of different 

subjects (Ashburner & Friston, 2000). VBM entails many steps, including Magnetic 

field inhomogeneity correction, tissue segmentation and spatial normalization. As 



a part of or following VBM, statistical tests could be used, in order to detect 

differences through all voxels in the image, which enables for example detecting 

volumetric variation across specific brain tissues (Ashburner & Friston, 2000; 

Whitwell, 2009) in different subjects

(GM). VBM was used by past studies, for instance in highlighting the GM loss in MCI 

(Baron et al., 2001; Chételat et al., 2002), compare GM loss in early stages of the 

disease with the normal controls (Hirata et al., 2005), and to investigate 

hippocampus atrophy milestone along AD progression (Chételat et al., 2008). 

 

maging Initiative (ADNI) 

As mentioned previously, our cohort is adapted from 

Neuroimaging Initiative (ADNI). ADNI is a large longitudinal, multicenter study, 

began in October 2014 as a consortium of various medical centers and universities 

in the USA (Peterson et al., 2009; Weiner et al., 2013). ADNI has a global goal of 

detecting, developing and validating various clinical, imaging, genetic and 

biochemical biomarkers as predictors and outcomes, which might help in the early 

diagnosis and follow- in facilitating subsequent 

clinical trials with the aim of early detection and treatment 

(Weiner et al., 2010; 2013). Until now, ADNI has 4 phases including ADNI 1, ADNI 

GO, ADNI 2, ADNI 3. ADNI enrolled subjects between the ages of 55 and 90, who 

had a serious of initial clinical, neuropsychological, imaging and genetic testing, 

some of which were repeated at regular times over the next years after obtaining a 

written consent. The study had a very big impact in establishing standardized 

protocols especially in the neuropsychological tests, MRI acquisition and images 

preprocessing which might facilitate further application in the clinical trials 

(Weiner et al., 2013). ADNI raw and processed data are available online for the 

scientific community all over the world. The principle investigator in the study is 

Michael W. Weiner, M.D., VA medical center and university of San Francisco, 

California, USA and it was funded by a public-private partnership.  

 

 

 



Objectives & Hypothesis 

In this project, the hippocampus GMV atrophy along its longitudinal axis in various 

AD phenotypes compared to normal controls was examined. In addition to that, I 

tried to approach whether different subregions in the hippocampus were affected 

in different AD phenotypes. The percentage change of mean hippocampus GMV in 

each subregion in various with the normal elderly 

controls was investigated, which might quantitavely detect the most probable 

affected subregions in different stages of the disease. As mentioned previously, 

Hippocampal subregions along its longitudinal axis are supposed to be dissimilar 

with regards to the afferent, efferent neuronal networks, functional connectivity, 

behavioral functions, gene expression and lipid composition and metabolism. 

 

In previous studies, it was mentioned that hippocampus GMV was differentially 

affected along the anterior-posterior axis in different AD stages (Greene & Killiany, 

2012; Martin et al., 2010). The Head and Body were mostly affected in MCI (Martin 

et al., 2010) and in both MCI, AD groups (Greene & Killiany, 2012). Moreover, it 

was proposed that hippocampus volume is more decreased in later stages of the 

disease (Greene & Killiany, 2012). Based on that, it is hypothesized that 

hippocampus GMV would be asymmetrically affected in various AD phenotypes in 

different subregions along the anterior-posterior axis, where the degree of atrophy 

would be more pronounced in more advanced AD stages namely AD and LMCI 

more that the earlier ones such as SMC and EMCI. Moreover the Head and Body 

subregions should be more affected than the tail. 

 

This study should bring the scientific world a novel insight into investigating the 

possible effect of early AD stages i.e SMC and EMCI on the hippocampus mean GMV 

in different subregions. The best stage to medically intervene with AD is the pre-

dementia stages (Khan, 2016) to delay the disease progression, which gives a 

crucial importance to try to find AD markers for these stages and try to validate 

them. This study could add some evidence for the possible importance of the 

hippocampus sub

a probable AD before dementia occurs. Adapting a hippocampus subregions  

model, divided based on the multimodal CBP can aid, in addition, in 



complementing the current ongoing research with similar aims, but using different 

hippocampus models.  

 

Methods 

 

Cohort 

The data used in this project was extracted from the ADNI database 

(http://adni.loni.usc.edu). Subjects were adapted from ADNI phases: ADNI GO, 

ADNI 2 and ADNI 3. Distribution of subjects between the ADNI phases was as 

follows: ADNI 2 (771, 79%), ADNI GO (126, 13%) and ADNI 3 (77, 8%). In ADNI, 

subjects were first selected according to a serious of exclusion-inclusion criteria 

and then classified into 5 groups according to multiple criteria. All subjects have 

signed an informed written consent at all sites. 

  

Subject selection. 

Subjects recruited by ADNI were subject to a screening visit, in which a serious 

of neuropsychological, laboratory, clinical and imaging procedures were 

performed. A serious of inclusion and exclusion criteria was applied (Adapted 

from ADNI procedures manual: 

http://adni.loni.usc.edu/methods/documents/).  

 

Inclusion criteria.  

1. Age is between 55 and 90 years. 

2. Geriatric depression scale (GDS) (See Box 1) is below 6. 

3. Modified Hachniski score (See Box 1) . 

4. Availability of study partner, who has direct contact and/or accompanying 

the tested subject. 

5. Good health condition without known diseases, which might interfere with 

the study. 

6. Visual and auditory capabilities sufficient for neuropsychological testing 

7. Fluency in English or Spanish. 

8. Completion of 6 grades of education or sufficient work history. 



9. Willingness to participate in a longitudinal study. 

10. Willingness to undergo repeated MRI scans. 

 

Exclusion criteria. 

1- Screening or baseline MRI scans with signs of infection, infarction or focal 

lesions. 

2- Presence of metal objects as Pacemakers and Artificial heart valves. 

3- Major depression (Diagnostic and Statistical Manual of Mental Disorders 

(DSM)-IV criteria) during the previous 1-year as well as any psychotic 

features in the last 3 months. 

4- History of Schizophrenia according to (DSM-IV criteria). 

5- Alcohol or substance abuse or dependence in the previous 2 years (DSM IV 

criteria). 

6- Significant medical condition. 

7- Significant abnormalities in vitamin B12 or Thyroid Function Tests (TFTs), 

which might affect the testing protocol. 

8- Habitation in skilled nursing facility. 

9- Actual use of Warfarin or some psychoactive medications as sedative 

hypnotics or anxiolytics. 

10- Taking part in clinical studies, in which neuropsychological testing occurs, 

more than once per year. 

11- History of cancer five years before screening except for Melanoma. 

 

Subject classification. 

Subjects were classified into 5 diagnosis groups based on the following: 

 Cognitively Normal (CN) group:  

1- No memory complaints confirmed by the study partner. 

2- Normal memory functions, assessed by Wechsler memory scale  delayed 

recall scores (See Box 1), adjusted to education  

a.  

b. -15 education years 

c. -7 education years. 



3- Mini-Mental State Exam score (MMSE) between 24 and 30 (See Box 1). 

4- Clinical Dementia Rating (CDR) score (See Box 1) = 0 with the memory 

component = 0 

5- Absence of significant affection of cognitive functions or daily activities. 

6- Permitted medication taken in stable doses, for example: Estrogen 

replacement therapy and antidepressants (lacking significant 

anticholinergic side effects). 

 

 Subjective Memory Concern (SMC) group: same as CN except for the 

presence of subjective memory complains, which were reported by the 

subject, partner or a clinician. 

 

 Early Mild Cognitive Impairment (EMCI) group:  

1- Subjective memory complaints confirmed by subject, the study partner or 

a clinician. 

2- Abnormal memory functions, assessed by Wechsler memory scale  

delayed recall scores adjusted to education  

a. 9-11 for 16 or more education years 

b. 5-9 for 8-15 education years 

c. 3-6 for 0-7 education years. 

3- MMSE score: same as in CN. 

4- CDR score = 0.5 with the memory component at least =0.5 

5- 

disease by clinician (According to NINCDS/ADRDA criteria). 

6- Permitted medications: same as that in CN in addition to Cholinesterase 

inhibitors and Memantine, which are permitted until 12 weeks before the 

screening. 

 Late Mild Cognitive Impairment (LMCI) group:  

1- Subjective memory complaints: same as in EMCI. 

2- Abnormal memory functions, assessed by Wechsler memory scale  

delayed recall scores adjusted to education. 

a. for 16 or more education years 

b.  for 8-15 education years 



c. for 0-7 education years. 

3- MMSE: same as in CN. 

4- CDR and its memory component: same as EMCI. 

5- Cognitive functions: same as in EMCI. 

6- Permitted medications: same as in EMCI. 

 

  

1- Subjective memory complaints: same as in EMCI. 

2- Abnormal memory functions: same as in LMCI. 

3- MMSE score between 20-26 

4- CDR = 0.5 or 1 

5- Cognitive functions:  according to NINCDS-ADRDA criteria. 

6- Permitted medications: same as that in EMCI 

 

For each group, additional exclusion parameters were applied as follows:  

 CN

disease. 

 SMC: same as CN. 

 EMCI: significant neurologic disease other than possible incipient 

 (another term for MCI). 

 LMCI: same as in EMCI. 

 AD: significant neurologic disease other than probable . 

 

After subject selection and classification during the screening visit, subjects 

were scheduled for subsequent visits namely the baseline visit followed by a 

month 3 visit, month 6 visit and then an annual visit, all in which various 

neuropsychological and imaging procedures, for follow up and monitoring, 

were performed. 

 

An important point to take into consideration is that Peterson and colleagues 

have evaluated the clinical classification of the subjects into 3 groups (CN, MCI, 

AD) in the ADNI study and found that ADNI has successfully classified these 

subjects, where the cognitive affection of AD subjects was the highest, even 



more than the MCI, whereas no cognitive affection in CN subjects was found 

(Peterson et al., 2009). 

 

 

 

 

Box 1. Behavioral te

 

 

Mini Mental State Examination (MMSE): MMSE (Folstein et al., 1975) consists of 

a serious of tasks, testing different domains with regards to the cognitive functions, 

including short and long term memory, orientation to time and place, 

constructional ability and ability to follow commands. The applied MMSE version 

in ADNI has 10 tasks with maximum score of 30. MMSE is widely used in 

differentiating subjects with dementia (AD) from the normal control subjects with 

a moderate sensitivity (79%) and high specificity (95%) (Hancick & Larner, 2011; 

Khan, 2016), however it shows lower ability in differentiating earlier stages of 

cognitive affection including the SMC and MCI stages (Benson, Slavin, Tran, Petrella 

& Doraiswamy, 2005; Mitchell, 2009)  

 

Wechsler memory scale  delayed recall (Wecshler, 1987): is a subtest of the 

Wechsler memory scale- revised (WMS-R), which is a well known, widely used test 

battery, serving in memory assessment especially in memory clinics (Clark et al., 

2013; Iseki et al., 2010; Kinno et al., 2017). Newer versions of the Wecshler 

memory scale exist, but the revised version (WMS-R) is still widely used, because it 

was translated to many other languages (Kinno et al., 2017). Logical memory-

delayed recall component represents the verbal memory subset of the WMS-R 

(Wecshler, 1987; Kawai et al., 2013), which is based on delayed recall (after 30-40 

minutes) of a previously presented story components, where the subject is 

evaluated for each word/unit of the story he recalls, which results in a score, 

ranging from (0-25) (Wecshler, 1987). 

 



 

 

 

Clinical Dementia Rating scale (CDR) (Morris, 1993): Is a widely used test 

battery primarily in the AD dementia diagnosis and staging (Morris, 1993; 2001; 

Williams 2012). It consists of a semi-structured interview with the subject and the 

informant, designed to detect cognitive decline in 6 categories namely memory, 

orientation, Judgment and problem solving, community affairs, home and hobbies 

and personal care (Morris, 1993). It has the advantage of being directly related to 

proved clinical diagnostic criteria of AD (Morris, McKeel, Fulling, Torack & Berg, 

1988). Moreover it shows high degree of stability in dementia severity rating 

between participants (Williams, Roe & Morris, 2009) and might detect earlier 

stages of AD dementia as MCI (Morris, 2001) and even pre MCI (Storandt, Grant, 

Miller & Morris, 2006; Williams, Storandt, Roe & Morris, 2013). It has the 

disadvantage of being time-consuming. (Khan et al., 2016) 

 

Geriatric Depression Scale (GDS) (Sheikh & Yesavage, 1986): Is a brief 

questionnaire, composed of 15 questions designed as a screening tool to detect 

depression in the elderly (Sheikh & Yesavage, 1986). Besides it also shows 

sensitivity in detecting depression among the elderly, suffering from mild to 

moderate dementia (Brink, 1984; Sheikh & Yesavage, 1986). 

 

Modified Hachinski score (Rosen, Terry, Fuld, Katzman & Peck, 1980): Is a 

clinical systematic approach, used to differentiate the AD dementia from the 

vascular dementia, through completing a form, with relevant neuropsychiatric 

clinical information about the subject, by a clinician, who is familiar with the 

patient. This form compromises information about a possible abrupt or gradual 

cognitive impairment, somatic complains, emotional incontinence, Hypertension 

history, strokes history, Focal Neurological symptoms (e.g. Seizures and dizziness) 

and motor Focal Neurological signs (e.g. unequal deep tendon reflexes). 

 







                                                                  (a)                                    (b) 

Figure 2. 3-partite consensus cluster solution based on multimodal functional CBP 

representing: (a) left hippocampus (b) right hippocampus. The red color 

represents anterior cluster, blue color represents the intermediate cluster and the 

green color represents the posterior cluster. Adapted from (Plachti et al., 2019). 

 

MRI Images Acquisition, Preprocessing and Analysis 

 

MRI protocol. 

MRI mages were downloaded from the ADNI website (http://adni.loni.usc.edu).  

Subjects were scanned by standardized MRI protocol, described in (Jack et al., 

2008; 2010) (http://adni.loni.usc.edu/methods/mri-tool/mri-analysis/#mri-

data-set-container). High-resolution structural MRI scans were acquired from 

61 ADNI sites through 3 Tesla scanners. The used scanners were from Siemens 

medical solutions, Philips medical systems or General Electric health care (GE). 

Each subject had two (accelerated and non-accelerated) T1 weighted, 3 Tesla 

MRI scans using a sagittal 3D Magnetization Prepared Rapid Acquisition 

Gradient Echo (MPRAGE) sequence on Siemens or Philips scanners and a 

similar pulse sequence, the 3D Inversion Recovery-Fast SPoiled GRass (IR-

FSPGR), on GE systems. The following acquisition parameters were applied: 

Repetition Time (TR) of 2300 ms, Inversion Time (TI) of 853-900 ms, minimum 

full Echo Time (TE), flip angle of 8-9°, field of view = 256-260 × 240 mm, with 

160-170 sagittal 1.2 mm-thick-slices, in a 256 × 256 matrix, yielding a voxel 

resolution of 1.25 × 1.25 × 1.2 mm, later reconstructed to 1mm isotropic voxels 

(Hua et al., 2010). With regards to the adapted images for subjects from the 

ADNI 3, a slightly different protocol described in (Gunter et al., 2017) with the 

following sequence changes was applied: 208 × 240 × 256 mm field of view, 

yielding a voxel resolution of 1 × 1 × 1 mm. 

 

MRI images post-acquisition correction for possible artifacts. 

In ADNI, a serious of data correction as well as image quality control 

procedures, performed in Mayo clinic (Rochester, MN, USA) and described in 



(Jack et al., 2008). These included revision of each incoming image with regards 

to image quality, for example the contrast to noise, spatial resolution, resistance 

to artifacts, protocol compliance and any significant medical aberration. Then 

images were subject to further series of image pre-processing procedures 

including 3 steps: image post-acquisition geometric error correction for 

gradient non-linearity (Jovicich et al., 2006), which corrects geometric 

distortion of images acquired from multiple sites. Moreover nonparametric 

intensity non-uniformity normalization is applied to correct for signal intensity 

non-uniformity, which might result from multiple factors including, for example, 

the Radiofrequency (RF) coil non-uniformity in MRI scanner (Sled, Zijdenbos & 

Evans, 1998). This is an important step before tissue segmentation, which 

requires intensity uniformity for correct classification of each voxel in the 

correct tissue class (Sled et al., 1998). In addition to that, intensity 

inhomogeneity correction with regards -

uniformity in the MRI scanner is applied, which, if not corrected, might, not only 

affect later image processing steps, but also affects image interpretation 

(Narayana, Brey, Kulkarni & Sievenpiper, 1988). Such steps assure the 

standardization of the acquired MRI images across different sites, which might 

give a big chance to capture structural brain differences between subjects, 

which were not caused by MRI technical non-uniformity or signal 

inhomogeneities (Jack et al., 2008). 

 

Voxel Based Morphometry (VBM).  

In this project, VBM preprocessing was applied using the SPM 12 toolbox 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm12/; Statistic Parametric 

Mapping, Institute of Neurology, UCL, London, The UK) as well as the 

Computational Anatomy Toolbox (CAT) 12.5 (http://www.neuro.uni-

jena.de/cat/; structural brain mapping group, Jena university hospitals, Jena, 

Germany), which is an extension to the SPM 12. The protocol used is in 

accordance with what has been described in CAT 12.5 manual 

(http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf).  

 



Images were first corrected for inhomogeneities (bias) in the magnetic field and 

then segmented to Grey Matter (GM), White Matter (WM) and Cerebro-Spinal 

Fluid (CSF) (Ashburner and Friston, 2005). Segmentation step was done by 

applying Adaptive Maximum A Posterior (AMAP) technique based on 

(Rajapakse et al., 1997) to segment the brain into 3 classes: GM, WM and CSF as 

well as by applying Partial Volume Effects (PVE) (Gaser and Dahnke, 2016; 

Tohka, Zijdenbos, & Evans, 2004) to further divide the brain into two additional 

mixed classes namely GM-WM and GM-CSF. By taking these two methods into 

consideration, each pure tissue fraction in each voxel can be better estimated 

and thus a better chance exists for more accurate tissue segmentation. Spatial 

normalization for the image segments followed using the DARTEL algorithm 

(Ashburner, 2007) and images were normalized to the MNI space. Voxel size of 

the VBM-preprocessed images was 1 mm × 1 mm × 1 mm. All steps are 

illustrated more in Box 2. 

 

illustrates how the local structures are aligned, when matching brains of two 

subjects together takes place (Kurth et al., 2015). Jacobian matrices are 

derivatives of the deformation, which encode the local voxel changes (e.g. 

stretching) within the deformation field. Jacobian determinants are valuable 

output from these matrices, which indicates how the voxel volume has been 

changed before and after spatial transformation (Ashburner, 2007). These can 

be used in order to correct for the volume changes in different segments (e.g. in 

GM) after spatial Normalization (Kurth et al., 2015). 

 

The modulated, normalized, non linear images were created, by multiplying voxel 

values with the Jacobian determinant obtained from spatial normalization, which 

gives an advantage of comparing absolute amount of tissue like GMV in further 

analysis (Good et al., 2001). 

 



 

 

 

 

 

 

 

Box 2. Voxel Based Morphometry (VBM) steps employed in this project. 

 

1. Magnetic field bias correction: is an essential step before tissue 

segmentation to act against possible MRI magnetic field inhomogeneity, 

which might result in different tissue intensities within the same tissue, that 

are not based on tissue differences, which might affect the automated tissue 

segmentation step (Ashburner & Friston, 2005; Kurth, Luders & Gaser 2015). 

Bias might result from static and radio frequency (RF) magnetic fields 

irregularities, different RF receiver coil sensitivities as well as from different 

magnetization properties of the object/subject being imaged (Lüdeke, 

Röschmann & Tischler, 1985; Rajapakse, Giedd & Rapoport, 1997). The effect 

of bias is more pronounced in high field MRI (T1 weighted) due to the 

difficulty of keeping homogenous magnetic field intensity with higher field 

strength (Kurth et al., 2015). Various methods were introduced to act against 

this possible artifact including various parametric and non-parametric bias 

correction models, summarized in (Ashburner & Friston, 2005). The used 

method in our study was based on (Ashburner & Friston, 2005), where the 

perceived signal was considered as an uncorrupted signal, with added 

Gaussian noise, covered with bias, where the noise and bias were 

independent from each others. Noise is based on various properties of 

different tissues. Bias correction is further bolstered by a set of parameters, 

which act against smooth intensity variations. 

 

 

 



 

2. Tissue segmentation: is based on different tissue intensities, which 

results in segmenting the brain into WM, GM and CSF with excluding the non-

brain components. The segmentation approach used in our study was based 

on two techniques:  

Adaptive Maximum A Posterior (AMAP) segmentation. 

AMAP is an automated statistical segmentation technique, which takes into 

account, not only the biological differences between different tissue types, 

but also magnetic field intensity inhomogeneity (Rajapakse et al., 1997). 

The set of parameters linking the image data to the segmentation process 

are ion the form of finite Gaussian mixture, which is based on Expectation-

Maximization algorithm (EM), which is an iterative method to identify 

maximum likelihood or Maximum A Posteriori (MAP) estimate of model 

parameters (Dempster, Laird & Rubin, 1977; Gupta and Chen 2010; 

Rajapakse et al., 1997). Moreover, the technique depends on the a priori 3-D 

Markov Random Field (MRF) probability model, where the probability of a 

voxel depends on the neighboring voxels (Rajapakse et al., 1997). This gives 

the advantage of not only including spatial correlation in the segmentation 

process, but also to consider signal inhomogenitiy (Held et al., 1997). 

 

Partial Volume Effects (PVE). 

A single voxel might contain different tissue types based on the finite 

resolution of the MRI (Tohka, Zijdenbos & Evans, 2004). This can happen at 

tissue borders, for instance between brain parenchyma and CSF as well as 

between GM and WM (Kurth et al., 2015). This means a single voxel is not 

either GM, WM or CSF but rather more than one tissue type, which means 

that various signal intensities might be conveyed from different tissues even 

in the bias corrected images (Kurth et al., 2015). The used technique has 

Partial Volume (PV) classification step, in which voxels with mixed tissue 

content are labeled, and Partial Volume Content (PVC) estimation step, 

where different tissue types in each voxel are estimated (Tohka et al., 2004) 

 

 



 

ROI analysis. 

Mean GMV was extracted from the before-mentioned ROI, for each participant 

in the following steps. The first step was creating masks for the ROI, which were 

then 3D resampled using the AFNI package (Cox, 1996; afni.nimh.nih.gov) to 

the MNI space containing the preprocessed T1 weighted images, with the same 

resolution. This is to make sure that the resampled ROIs fit the dimensions, 

space, and orientation and have the same voxel size as our preprocessed T1 

weighted images, before extracting any data from them. In the next step, 

average GMV was then extracted for each participant from the ROI, using the 

fslstats function in the FSL package (Jenkinson, Beckmann, Behrens, Woolrich & 

Smith, 2012; Smith et al., 2004; Woolrich et al., 2009) 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). 

 

 

 

3. Spatial Normalization: the Diffeomorphic Anatomical 

Registeration Through Exponentiated Lie algebra (DARTEL) was 

applied in this study. DARTEL is a non-linear registration approach, 

which has the advantage over the linear registration approaches in 

minimizing the local inter-subject brain (Ashburner, 2007; Stonnington 

et al., 2007; Kurth et al., 2015). This technique is performed through 

creating an initial study group/ predefined (in MNI space) DARTEL 

template, which represents intensity means of the GM and WM 

o this 

template, a new template is created as the mean of the new images 

(Ashburner, 2007;Michael, Evans & Moore, 2016). This process is 

repeated many for a number of times, and after each time the resulting 

new templates are sharper than the initial one a -

to-

are registered to the final template. 

 



Statistical Analysis  

A two-way ANalysis of COVAriance (ANCOVA) was performed to investigate 

whether the hippocampus mean GMV is differential in different subregions, in 

different diagnosis phenotypes of AD. Statistical analysis was performed using the 

JASP software (https://jasp-stats.org). Significance levels were set at P< .05.  

 

 

Results 

 

Descriptive Statistics: In this section I will focus on the age, education 

and gender distribution in the cohort and I will describe some of the behavioral 

 for the cohort.  

 

Demographic characteristics  Age and Education. 

The mean Age (See Table 2, Figure 3) in all diagnosis groups was arranged as 

follows: in an ascending order, the lowest mean was the EMCI group (M=71, 

SD=7.52) then LMCI (M= 72.2, SD= 7.57), SMC (M= 72.2, SD= 5.79), CN (M=73, 

SD=6.4) and AD (M = 74.5, SD= 8.3) groups. Means in the 5 groups were not 

significantly different from each other at P Bonferroni of  < .001, except between 

(AD, SMC) groups and (EMCI, SMC) groups. 

 

The mean Education (See Table 2, Figure 4) was arranged as follows: in an 

ascending order, the lowest mean was in the AD group (M =15.80, SD= 2.605) 

followed by EMCI (M= 15.89, SD= 2.643), LMCI (M= 16.42, SD= 2.584), CN (M= 

16.48, SD= 6.452), and then SMC (M= 16.88, SD= 2.475) groups. Means are not 

significantly different from each other except between (AD, EMCI), (AD, LMCI) 

and (CN, EMCI) groups, at P Bonferroni of  < .001. 

 



 

   Figure 3. Age plot versus Diagnosis.         Figure 4. Education plot versus Diagnosis. 

 

Table 2. 

Demographic characteristics  age and education. 

 Diagnosis Mean SD Minimum Maximum N 

Age CN 72.98 6.452 55.80 89.00 199 

SMC 72.21 5.786 58.70 90.30 145 

EMCI 71.00 7.519 55.00 88.60 313 

LMCI 72.19 7.570 55.00 91.40 168 

AD 74.49 8.268 55.90 90.30 149 

 

Education CN 16.48 2.548 12.00 20.00 199 

SMC 16.88 2.475 8.000 20.00 145 

EMCI 15.89 2.643 10.00 20.00 313 

LMCI 16.42 2.584 9.000 20.00 168 

AD  15.80 2.605 9.000 20.00 149 

Note. Measurements were in years. SD is the Standard Deviation. N is the Number 

of subjects. 

 

Demographic characteristics  Gender. 

With regards to the Gender (See Table 3), the male-female numbers and 

percentages were different among different groups. The male number and 

percentage were higher in the AD group (85, 57%), EMCI (171, 55%) and in the 



LMCI (89, 53%) groups. On the other hand the female number and percentage 

were higher in the CN (110, 55%) and SMC (87, 60%). 

 

Table 3. 

 Demographic characteristics  Gender. 

  Male Female  

  Number Percentage Number Percentage Total 

number 

Gender CN 89 45% 110 55% 145 

SMC 58 40% 87 60% 149 

EMCI 171 55% 142 45% 313 

LMCI 89 53% 79 47% 168 

AD 85 57% 64 43% 199 

 

 

Behavioral characteristics. 
 

Regarding the Mini Mental State Examination (MMSE) test scores (See Table 4, 

Figure 9), the highest mean was the SMC group (M= 29.12, SD= 1.121) followed 

by CN (M= 29, SD=1.24), EMCI (M= 28.3, SD=1.56), LMCI (M=27.6, SD=1.82) and 

AD (M=23.1, SD=2.08).  

 

With regards to the Wechsler memory scale  delayed recall test results (See 

Table 4, Figure 10), the highest mean was in the CN group (M= 13.4, SD= 3.05) 

followed by SMC (M= 13.2, SD=3.21), EMCI (M= 8.88, SD=1.77), LMCI (M= 3.99, 

SD= 2.67) and AD (M= 1.47, SD= 1.87).  

 

With regards to the Clinical Dementia Rating (CDR) results (See Table 4, Figure 

11), the highest mean was in the AD group (M= 4.48, SD= 1.71) followed by 

LMCI (M= 1.76, SD=0.1), EMCI (M= 1.28, SD=0.75), SMC (M= 0.05, SD= 0.15) and 

CN (M= 0.03, SD= 0.13). 

 

For the 3 tests, all means in the 5 groups are significantly different from each 

other except between the (CN, SMC) groups, at P Bonferroni of  < .001. 



 

 

Table 4. 

Behavioral scores in each diagnosis group. 

 Diagnosis Mean SD Minimum Maximum Valid Missing 

Mini Mental 

State 

Examination 

(MMSE) 

score 

CN 29.03 1.241 24.00 30.00 199 0 

SMC 29.12 1.121 24.00 30.00 145 0 

EMCI 28.31 1.564 23.00 30.00 313 0 

LMCI 27.62 1.817 24.00 30.00 168 0 

AD 23.07 2.075 19.00 26.00 149 0 

 

 Wecshler 

memory 

scale 

delayed 

recall score  

CN 13.43 3.054 7.000 21.00 199 0 

SMC 13.21 3.208 5.000 23.00 145 0 

EMCI 8.881 1.774 5.000 15.00 312 1 

LMCI 3.994 2.672 0.000 11.00 167 1 

AD 1.470 1.866 0.000 8.000 149 0 

 

Clinical 

Dementia 

Rating 

(CDR) score 

CN 0.03266 0.1337 0.000 1.00 199 0 

SMC 0.05172 0.1528 0.000 0.5000 145 0 

EMCI 1.276 0.7529 0.5000 4.00 313 0 

LMCI 1.762 0.9999 0.5000 5.500 168 0 

AD 4.483 1.707 1.000 10.000 149 0 

Note. SD is the Standard Deviation. 

 

Stage on The Hippocampus 

Mean GMV on Both Hemispheres 

 

Two- way ANCOVA- left hemisphere. 

A two-way ANCOVA was performed on the left hippocampus to investigate, if 

there is differential affection of the left 

different AD diagnosis groups. The model has 2 factors, in which the first factor 

was the cluster (3 clusters, including the anterior, intermediate and posterior 



clusters), and the second factor was the diagnosis (5 diagnosis groups, including 

AD, CN, EMCI, LMCI and SMC). The dependent variable was the left 

h

Through ANCOVA we could investigate the main effects of the Cluster and 

Diagnosis on the left hippocampus GMV as well as the interaction effects 

between the 2 factors with regards to the mean GMV, all of which after 

controlling for age, education and gender. This is to see the possible differential 

affection of left hippocampus GMV in different subregions in various diagnosis 

groups and see the potential dependency of the left hippocampus atrophy on 

the AD stage. 

Main & interaction Effects. 

Results (See Table 6) suggested that there were significant main effects of the 

diagnosis (F (4,2904) = 230, p < .001, p2 =0.158) and the cluster (F (2, 2904) = 

631, p < .001, p2 = 0.217) on the left hippocampus mean GMV. In addition to 

that, there was no significant interaction effect between cluster and diagnosis (F 

(8, 2904) = 0.8, p = .601 p2 =0.001), with this regard (See Table 6). 

Table 6. 

Two-way ANCOVA results 

 Sum of 

Squares 

df Mean 

Square 

F p  

Cluster 6.567 2.000  3.284  630.633  < .001  0.217 

Diagnosis 4.782 4.000 1.195 229.577 < .001 0.158 

Cluster * 

Diagnosis 

0.033  8.000   0.004 0.802 0.601  0.001 

Age 2.798  1.000 2.798  537.291  < .001 0.092 

Gender 0.946  1.000 0.946 181.637  < .001 0.031 



Education-

years 

0.006  1.000 0.006  1.136  0.287  0.000 

Residual 15.121 2904.000 0.005    

Note.  Type III Sum of Squares. The df is the degree of freedom, F is the F ratio adjusted to the 

covariates and the  represents the effect size. 

In the left anterior cluster, the AD group (M = 0.527, SD = 0.088) had the smallest 

mean GMV followed by the LMCI (Mean = 0.592, SD = 0.099), the EMCI (M = 

0.626, SD = 0.090), the SMC (M = 0.663, SD = 0.063) and then the CN (M = 0.657, 

SD = 0.067) groups. 

 

With regards to the left intermediate cluster, similar results to the anterior 

cluster were present, with the AD group (M = 0.469, SD = 0.088) having the 

smallest mean GMV, followed by the LMCI (M = 0.528, SD = 0.099), the EMCI (M 

= 0.569, SD = 0.087), the SMC (M = 0.596, SD = 0.065) and then the CN (M = 

0.605, SD = 0.067) groups. 

Regarding the left posterior cluster, there were also similar results to the 

previously mentioned clusters, where the mean GMV was the lowest in the AD 

group (M = 0.411, SD = 0.080) followed by the LMCI (M = 0.459, SD = 0.091), 

EMCI (M = 0.514, SD = 0.084), SMC (M = 0.537, SD = 0.062) and CN (M = 0.540, 

SD = 0.065) groups. 

All of the results are summarized in table 7 and represented on figure 5. 

Table 7. 

Descriptives - mean GMVs with the Standard Deviation (SD) on the left 

Hemisphere. 

Cluster Diagnosis Mean SD N 

Left anterior 

cluster 

CN 0.657 0.067 199 

SMC 0.663 0.063 145 

EMCI 0.626 0.090 313 



LMCI 0.592 0.099 168 

AD 0.527 0.088 149 

Left 

intermediate 

cluster 

CN 0.605 0.067 199 

SMC 0.596 0.065 145 

EMCI 0.569 0.087 313 

LMCI 0.528 0.100 168 

AD 0.469 0.088 149 

Left posterior 

cluster 

CN 0.540 0.071 199 

SMC 0.537 0.062 145 

EMCI 0.514 0.084 313 

LMCI 0.459 0.091 168 

AD 0.411 0.080 149 

Note. Volume measurements are in mm3 and they represent the mean GMV. SD is 

the Standard Deviation and N is the number of subjects.  

 

Cluster_F1_lh                                                     Cluster_F2_lh 

 



Cluster_F3_lh 

                                           

Figure 5.  

 

Post Hoc Comparisons  Cluster. 

Since the Cluster has significant main effect, Post Hoc Comparisons Bonferroni 

correction (See Table 8) were done to examine which clusters specifically differ 

from the other with respect to GMV. Results have shown that there were 

significant differences between the left anterior cluster, left intermediate cluster 

and left posterior cluster regarding their GMV, where (pbonf  < .001). 

 

Table 8. 

Post Hoc Comparisons  Cluster. 

  Mean 

Difference 

SE t p bonf 

Left anterior 

cluster 

Left 

intermediate 

cluster 

0.060 0.003 17.564 < .001 

Left posterior 

cluster 

0.121 0.003 35.514 < .001 

Left 

intermediate 

cluster 

Left posterior 

cluster 

0.061 0.003 17.950 < .001 

 



Post Hoc Comparisons  Diagnosis. 

Because the Diagnosis had a significant main effect, Post Hoc Comparisons were 

performed, using t Test with Bonferroni correction (See Table 9), to examine 

which diagnosis group differs from the other with respect to the GMV. Results 

suggested that there were significant differences between all diagnosis groups 

(AD, CN, EMCI, LMCI and SMC) with regards to the left hippocampus mean GMV, 

(pbonf  < .001) except for the CN and SMC, which were not significantly different 

from each other (pbonf  = 1).  

 

 

Table 9. 

Post Hoc Comparisons  Diagnosis. 

  Mean 

Difference 

SE t p bonf 

CN SMC 0.003 0.008 0.370 1.000 

EMCI 0.037 0.006 5.929 < .001 

LMCI 0.073 0.007 10.255 < .001 

AD -0.120 0.008 -15.741 < .001 

SMC EMCI -0.035 0.007 -4.836 < .001 

LMCI -0.070 0.008 -8.916 < .001 

AD -0.117 0.008 -14.067 < .001  

EMCI LMCI 0.036 0.007 5.477 < .001 

AD -0.083 0.007 -11.713 < .001 

LMCI AD -0.047 0.008 -6.030 < .001 

 

To summarize, there is significant differential left hippocampus atrophy in the 3 

subregions between different AD diagnosis groups except between the CN and 

SMC groups. In addition to that, the hippocampus atrophy appears to be more 

pronounced in all 3 clusters, in the groups with advanced disease stage like AD 

groups more than LMCI, EMCI and SMC groups, all of which are arranged in 



ascending order with respect to mean GMV. Last but not least, left hippocampus 

atrophy was dependent on which diagnosis group the subject is in. 

 

Two- way ANCOVA- right hemisphere. 

A two-way ANCOVA was performed to investigate, if there is differential 

different AD diagnosis phenotypes. The first factor was the diagnosis (5 

diagnosis groups, including AD, CN, EMCI, LMCI and SMC), and the second factor 

was the clusters (3 clusters including the anterior, intermediate and posterior 

clusters. The dependent variable was the right hippocampus 

GMV. The covariates were age, gender and education. This was to examine the 

probable differential affection of the right hippocampus GMV in various 

subregions in all the 5 diagnosis phenotypes and whether hippocampus atrophy 

is dependent on the diagnosis group. 

Main & interaction Effects.  

Results (See Table 12, 13) have shown that there was a significant main effect of 

the cluster on the right hippocampus mean GMV (F (2, 2904) = 816, p < p2 

= 0.273). In addition to that, there was a significant main effect of the diagnosis 

(F (4, 2904) = 196, p < p2 = 0.131) (See Table 14). Moreover, there was a 

significant interaction effect between cluster and diagnosis (F (8, 2904) = 2.18, 

p = .026 p2 = 0.003) (See Table 10). All results are after controlling for age, 

gender and education. 

Table 10. 

Two-way ANCOVA results 

 Sum of 

Squares 

df Mean 

Square 

F p  

Cluster 9.042 2.000  4.521  816.206  < .001  0.273 



Diagnosis 4.342 4.000 1.085 195.955 < .001 0.131 

Cluster * 

Diagnosis 

0.097  8.000   0.012 2.179 0.026  0.003 

Age 2.868  1.000 2.868  517.802  < .001 0.087 

Gender 0.709  1.000 0.709 127.962  < .001 0.021 

Education-

years 

0.005  1.000 0.005  0.944 0.331  0.000 

Residual 16.085 2904.000 0.006    

Note. Type III Sum of Squares. The df is the degree of freedom, F is the F ratio adjusted to 

the covariates and the  represents the effect size. 

The mean GMV was estimated in various clusters in different diagnosis groups. In the 

right anterior cluster, the AD group (M = 0.412, SD = 0.073) had the smallest mean GMV 

followed by the LMCI (Mean = 0.452, SD = 0.080), the EMCI (M = 0.498, SD = 0.076), the 

SMC (M = 0.513, SD = 0.061) and then the CN (M = 0.518, SD = 0.069) groups. 

 

With regards to the right intermediate cluster, similar results to the anterior 

cluster were present with the AD group (M = 0.464, SD = 0.102) having the 

smallest mean GMV followed by the LMCI (M = 0.528, SD = 0.112), the EMCI (M 

= 0.579, SD = 0.096), the SMC (M = 0.604, SD = 0.061) and then the CN (M = 

0.612, SD = 0.078) groups. 

For the right posterior cluster, there were similar results to the other two 

clusters, where the mean GMV was the lowest in the AD group (M = 0.541, SD = 

0.089) followed by the LMCI (M = 0.598, SD = 0.096), EMCI (M = 0.636, SD = 

0.086), SMC (M = 0.660, SD = 0.065) and CN (M = 0.665, SD = 0.067) groups. 

All of the results are summarized in table 11 and figure 6. 

Table 11. 

Descriptives - the Clusters mean GMVs with the SD on the right Hemisphere. 



Cluster Diagnosis Mean SD N 

Right anterior 

cluster 

CN 0.518  0.069  199  

SMC 0.513  0.061  145  

EMCI 0.498  0.076  313  

LMCI 0.452  0.080  168  

AD 0.412  0.073  149  

Right 

intermediate 

cluster 

CN 0.612  0.078  199  

SMC 0.604  0.076  145  

EMCI 0.579  0.096  313  

LMCI 0.528  0.112  168  

AD 0.464  0.102  149  

Right 

posterior 

cluster 

CN 0.665  0.067  199  

SMC 0.660  0.065  145  

EMCI 0.636  0.086  313  

LMCI 0.598  0.096  168  

AD 0.541  0.089  149  

Note. Volume measurements are in mm3 and they represent the mean GMV. SD 

is the Standard Deviation. N is the Number of subjects. 
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Figure 6. Descriptives plots mean GMVs, in each diagnosis group, 

on the right hemisphere.  

 

Post Hoc Comparisons  Cluster. 

Clusters on the right hemisphere had significant main effect as well, 

consequently Post Hoc Comparisons were performed using Bonferroni 

correction (See Table 12) and there were significant differences between the 

right anterior cluster, right intermediate cluster and right posterior cluster with 

regards to the mean GMV, where pbonf  < .001.  

 

Table 12. 

Post Hoc Comparisons  Cluster. 

  Mean 

Difference 

SE t p bonf 

Right anterior 

cluster 

Right 

intermediate 

cluster 

-0.079  0.004 -22.436  < .001  

Right posterior 

cluster 

-0.141  0.004 -40.317  < .001  

Right Right posterior -0.063  0.004 -17.882  < .001  



intermediate 

cluster 

cluster 

 

Post Hoc Comparisons  Diagnosis. 

Diagnosis had a significant effect on the mean GMV, so Post Hoc Comparisons 

using t Test with Bonferroni correction were done (See Table 13). Results have 

shown that there were significant differences between all diagnosis groups (AD, 

CN, EMCI, LMCI and SMC) with regards to the right hippocampus mean GMV, 

where (pbonf  < .001), except for the CN and SMC, which were not significantly 

different from each other with this regard, where (pbonf  = 1).  

 

Table 13. 

Post Hoc Comparisons  Diagnosis. 

  Mean 

Difference 

SE t p bonf 

CN SMC 0.007  0.008  0.881  1.000   

EMCI 0.034  0.006  5.218  < .001 

LMCI 0.072  0.007  9.874  < .001 

AD -0.114  0.008  -14.673  < .001 

SMC EMCI -0.027  0.007  -3.657  0.003  

LMCI -0.065  0.008  -8.071  < .001  

AD -0.107  0.009  -12.616  < .001  

EMCI LMCI 0.038  0.007  5.749  < .001 

AD -0.081  0.007  -11.193  < .001 

LMCI AD -0.042  0.008  -5.332  < .001 

 

Post Hoc Comparisons  Interaction between Cluster and 

Diagnosis. 

Since there is significant interaction between the cluster and diagnosis, post-hoc 

analysis for this interaction was done, to see more specifically which cluster 



interacts with which diagnosis group with respect to GMV. Results suggest that 

there is significant interactions between all diagnosis groups and all clusters at 

pbonf  < .001 (See Table 14). 

 

Table 14. 

Marginal means- Cluster * Diagnosis 

    95% CI   

Cluster Diagnosis Marginal 

Mean 

SE Lower Upper t p 

Right 

anterior 

cluster 

CN 0.519 0.005 0.503 0.534 98.158 < .001 

SMC 0.509 0.006 0.490 0.527 82.028 < .001 

EMCI 0.493 0.004 0.481 0.506 116.773 < .001 

LMCI 0.452 0.006 0.435 0.469 78.703 < .001 

AD 0.424 0.006 0.406 0.442 69.267 < .001 

Right 

intermediate 

cluster 

CN 0.612 0.005 0.597 0.628 115.903 < .001 

SMC 0.600 0.006 0.581 0.618 96.682 < .001 

EMCI 0.575 0.004 0.562 0.587 136.035 < .001 

LMCI 0.528 0.006 0.511 0.545 91.901 < .001 

AD 0.476 0.006 0.458 0.493 77.734 < .001 

Right 

posterior 

cluster 

CN 0.666 0.006 0.650 0.681 126.049 < .001 

SMC 0.656 0.004 0.638 0.674 105.786 < .001 

EMCI 0.631 0.006 0.619 0.644 149.483 < .001 

LMCI 0.598 0.006 0.581 0.615 104.071 < .001 

AD 0.552 0.006 0.534 0.570 90.312 < .001 

Note. Bonferroni CI adjustment. CI is the Confidence Interval. 

 

To sum up, there is significant differential right hippocampus atrophy in the 3 

subregions between various AD diagnosis groups except between the CN and SMC 

groups. Moreover, the right hippocampus atrophy seems to be more prominent in 

all 3 clusters, in the groups with later disease stage as AD group more than LMCI, 



EMCI and SMC groups. Finally the right hippocampus atrophy in each cluster is 

dependant on the AD stage. 

 

 

Which subregions might be more affected more than the 

others in different disease stages? 

In this section, the percentage differences between different diagnosis groups 

(EMCI, LMCI and AD) and the CN group with regards to the hippocampus mean 

GMV in different clusters on the right and left hemispheres were investigated. This 

is measured by 

then dividing the resulting difference by the CN groups GMV value, followed by 

multiplying the result by 100 to get the percentage. This can give an additional 

insight, through highlighting the most affected clusters in different 

disease-related diagnosis groups.  

 

As mentioned previously the diagnosis groups were significantly different from 

each other in terms of mean hippocampal GMV on each of the left and right 

hemispheres except for the CN and SMC groups. Consequently the results on this 

section were focused only on the EMCI, 

CN. 

 

As shown in Tables 15a and 15b, the most probable affected clusters in the EMCI 

were the left and right intermediate clusters, where the left Intermediate cluster 

had -5,95% and the right intermediate cluster had -5,39% percentage differences. 

On the other hand, the most affected clusters in LMCI were the right intermediate 

cluster with -13,7% and the left posterior cluster with -15% percentage 

differences. In the AD group, the most probable affected clusters were the same as 

in LMCI but with higher percentage difference, in which the right intermediate 

cluster had -24,9% and the left posterior clusters had -23,9% percentage 

differences. 

 

Table 15a. 



Clusters mean GMV and percentage difference of each diagnosis group (AD and 

EMCI) from Cognitively Normal (CN) diagnosis group. 

Cluster CN SMC EMCI 

 GMV GMV %  

Difference 

GMV %  

Difference 

Left anterior cluster 0,657 0,663 0,9132 0,626 -4,72 

Left Intermediate 

cluster 

0,605 0,513 -0,96 0,569 -5,95 

Left posterior cluster 0,54 0,596 -1,48 0,514 -4,81 

Right anterior cluster 0,518 0,604 -1,3 0,498 -3,86 

Right intermediate 

cluster 

0,612 0,537 -0,55 0,579 -5,39 

Right posterior cluster 0,665 0,66 -0,75 0,636 -4,36 

Note. Volume measurements are in mm3 and they represent the mean GMV.  

 

Table 15b. 

Clusters mean GMV and percentage difference of each diagnosis group (LMCI and 

SMC) from Cognitively Normal (CN) diagnosis group. 

Cluster LMCI AD 

 GMV %  

Difference 

GMV %  

Difference 

Left anterior cluster 0,592 -10 0,527 -19,8 

Left intermediate 

cluster 

0,452 -12 0,469 -22,48 

Left posterior cluster 0,528 -12,73 0,411 -23,89 

Right anterior cluster 0,528 -13,73 0,412 -20,46 

Right intermediate 

cluster 

0,459 -15 0,464 -24,18 

right posterior cluster 0,598 -10,1 0,541 -18,65 



Note. Volume measurements are in mm3 and they represent the mean GMV. 

 

 

Discussion 

 

The aim of the study was to explore the possible differential affection of different 

hippocampus subregions in various AD diagnosis phenotypes in ADNI. We used 

subjects data from ADNI with 3T, T1-weighted structural MRI images, 

preprocessed them with VBM prior to GMV extraction using FSL package. Results 

suggested that there was asymmetric hippocampus affection along its longitudinal 

axis in different diagnosis groups. Moreover, the hippocampus shrinkage was more 

in later disease stages more than the earlier in all subregions. Besides, The right 

hippocampus atrophy appeared to be dependent on the disease stage. Finally the 

most affected clusters were the right, left intermediate and the left posterior 

subregions in different studied AD phenotypes. In the following, I will try to 

interpret the results and highlight some of the used techniques in relation to some 

of the past and current literature. 

 

Differential Affection of Hippocampus Subregions along 

AD Progression 

 

From the results, it was evident that there was differential affection of the mean 

GMV in different clusters along the anterior-posterior axis of the hippocampus in 

various AD diagnosis phenotypes. These results were in accordance with, what 

was described by some authors about the longitudinal gradient of not only the 

volume change, but also of that of the pathology, behavioral changes, metabolic 

changes, functional correlations and genetic representation in different 

hippocampus subregions, taking place in AD.  

 

With regards to the hippocampus volume change, it was evident across multiple 

studies that there was differential volume change along the longitudinal axis of the 



hippocampus during different stages of AD, yet the pattern of this change proved 

to be inconsistent across them. Hippocampal subregional volumes were 

significantly different between AD, MCI and normal controls, where AD subjects 

were most affected, followed by MCI subjects (Greene & Killiany, 2012; Martin et 

al, 2010; Maruszak & Thuret, 2014). Moreover, hippocampus atrophy in AD was 

found to be more pronounced in the anterior part i.e. the head, in AD subjects (Raji 

et al., 2009) and in MCI subjects (Martin et al., 2010) compared to healthy controls. 

It was proposed in addition that the anterior hippocampus could best predict the 

conversion to AD (Apostolova et al., 2006; Costafreda et al., 2011). However, in 

some other studies symmetric hippocampus atrophy was evident along the 

anterior-posterior axis in AD subjects (Chan et al., 2001; Laakso et al, 2000) and in 

MCI subjects (Echávarri et al., 2011). In another study, the most significant change 

was found to be in the head and body in both the MCI and AD groups with no 

significant difference between both groups, indicating the early involvement of 

these subregions along AD progression (Greene & Killiany, 2012).  

In our study, significant differences between the different diagnosis groups i.e. 

EMCI, LMCI, AD were found, compared with normal controls, where the AD 

subjects were most affected followed by LMCI and EMCI subjects. However the 

most affected clusters were the left and right intermediate clusters i.e. the body in 

EMCI, and the right intermediate and left posterior clusters in both the LMCI and 

AD, which is quite different from the anterior hippocampus atrophy pattern, found 

in some other previous studies. Discrepancy of our study from other studies as 

well as in between these studies themselves might be attributed to the differences 

in the adapted ROI model, which entails different techniques to cluster/segment 

the hippocampus.  

 

Other hippocampus pathologic changes in AD appeared to have an anterior-

posterior gradient. The anterior hippocampus was found to be the earliest affected 

hippocampus part with neurofibrillary tangles (Braak & Braak, 1995). Tau 

Proteins deposition is differential along the h axis and 

was found to be corresponding to the most atrophied subregions in AD subjects 

(Frankó & Joly, 2013). Besides, the hippocampus body was found to be more 

correlated to the CSF amyloid accumulation in MCI subjects (Carmichael, Xie, 



Fletcher, Singh & DeCarli, 2012). Dementia  severity in AD subjects, measured by 

CDR score, was more in the h ead than the body and tail (Gordon, 

Blazey, Benzinger & Head, 2013). Furthermore, glucose metabolism was 

significantly lower in hippocampus head in AD subjects (Ouchi et al., 1998). 

Moreover, functional correlation of the h

regions was found different, when comparing AD subjects with healthy controls, 

which might be related to the behavioral affection pattern, observed in AD (Zarei 

et al. 2013). While the functional correlation of the hippocampus head with PFC 

was stronger in AD subjects than healthy controls, the correlation of the 

hippocampus body with the PCC was weaker in AD subjects than in healthy 

controls (Zarei et al. 2013). Finally, the differential gene expression along the 

longitudinal axis could aid in explaining the dissimilar variability of hippocampus 

subregions  affection in AD, where the posterior subregion seemed to be more 

vulnerable than the anterior subregion to AD as described in (Vogel et al. 2019). 

All these changes might contribute to the before-mentioned subregional 

volumetric variations found in our study as well as in some other studies. 

 

Importance of Hippocampus  Atrophy 

Detection Using Structural MRI in Comparison to Other 

Tracing AD 

 

Different AD biomarkers are considered so important in AD detection, that they 

were incorporated in the diagnostic criteria, which have been introduced by the 

NIA-AA and the IWG as supportive tools for probable AD diagnosis. Biomarkers 

reflect the biological events occurring in the AD along its progression (Dubois et 

al., 2014). Biomarkers represent supportive diagnostic tools for suspecting and 

tracking of early asymptomatic and symptomatic AD (Dubois et al., 2014).  

 

Probable AD diagnosis includes a core clinical criterion, supportive criteria, and 

exclusion criteria (Dubois et al., 2007). As mentioned previously, some imaging 

markers such as hippocampus atrophy were included among the supportive 

criteria as they are important tools for tracing certain pathological alterations 



taking place in AD, and they correlated with the AD behavioral changes. Other 

markers include volume loss of other MTL structures such as entorhinal cortex, 

CSF biomarkers namely the beta amyloid and tau proteins, PET imaging markers 

such as glucose metabolism change, as well as genetic alteration. MRI markers 

namely MTL atrophy was found to be more effective in differentiating MCI and AD 

subjects from normal controls than the CSF biomarkers, in another words, it 

reflects the underlying clinical stage better (Vemuri et al., 2009). However 

combination between structural imaging and CSF biomarkers has been found more 

effective than each group alone in predicting the diagnosis group i.e. CN, MCI and 

AD (Vemuri et al., 2009). Another study revealed that combining MRI, CSF and 

neuropsychological measures was able to discriminate the 3 diagnosis groups and 

predict, who from the MCI will/will not convert to AD (Greene & Killiany, 2012). 

On the other hand, CSF and PET imaging biomarkers are believed to be detectable 

prior to the MRI biomarkers in the course of AD progression because they reflect 

the etiology of the disease, and they might be able in addition to be detected in 

subjects at risk of developing AD i.e preclinical/asymptomatic AD (Dubois et al., 

2014). Diagnostic precision depends on the choice of the marker and the protocol 

used for each (Frisoni et al., 2013). This raises the importance of developing 

standardized protocols for acquisition and analysis of all the markers, an effort 

done by ADNI, which will enhance  benefit in being powerful 

diagnostic tools in early AD detection (Frisoni, Fox, Jack, Scheltens & Thompson, 

2010; Weiner et al., 2013).  

 

Hippocampus atrophy rate reflects the neurodegeneration occurring in AD, and is 

used as an outcome measure for clinical trails involving disease-modifying 

therapies (Frisoni, Fox, Jack, Scheltens & Thompson, 2010). Whole hippocampus 

atrophy was not found as sensitive as atrophy of particular hippocampus 

subfields/subregions as a marker for AD (Apostolova et al., 2006; Maruszak & 

Thuret, 2014). Some authors claim that atrophy of some other MTL structures such 

as Entorhinal cortex might be more sensitive than hippocampus atrophy in 

detecting insipient AD i.e. MCI (Dickerson et al., 2001), as well as in reflecting 

underlying pathology (Dubois et al., 2007), However measuring its volume change 

is technically more difficult than the hippocampus (Du et al, 2001). A combination 



of different MTL structures atrophy might be a more sensitive way in capturing 

early AD (Dubois et al., 2007). An important challenge to consider, with regards to 

the MTL structures atrophy, is that it might happen as well in other types of non-

AD dementia disorders such as vascular dementia and hippocampus sclerosis, in 

other neurodegenerative conditions such as argyrophilic grain disease (Dubois et 

al., 2007; Jicha et al, 2006), as well as in Depression, in which hippocampus 

atrophy might happen (Bremner et al., 2000). However, careful clinical and 

psychological screening, employing other supportive criteria as the previously 

mentioned CSF biomarkers, and with the presence of exclusion criteria for such 

conditions might help differentiating atrophy on top of AD and non-AD dementias. 

This stresses the importance of combination of different measures beside the 

hippocampus atrophy in the diagnosis of probable AD, and gives an additional 

motive to study in depth the differential hippocampus subregion/subfield in 

different types of AD and non-AD dementias. 

 

Voxel Based Morphometry, A Reliable Method to Detect 

Hippocampus Volume Changes? 

 

Voxel Based Morphometry (VBM) is a dependable technique, used to detect voxel-

wise structural brain volumetric changes on T1 weighted sMRI images, which not 

only reflects the underlying biological brain changes such as GM/WM loss  

(Ashburner & Friston, 2001), but also enables further comparisons of the volume 

methods. VBM showed to be a sensitive and an objective method in detecting 

regional small-scale structural brain differences across different individuals 

(Mechelli, Price, Friston & Ashburner, 2005). VBM has helped many researchers to 

Chételat et al., 2005), Schizophrenia 

(Meisenzahl et al., 2008), bipolar disorder (Brown et al., 2012), aging (Good et al., 

2001), gender (Smith et al., 2007), genetic composition (Campbell et al., 2006), and 

developmental disorders (Silani et al., 2005) on the structure of the brain. In 

changes, 



occurring early in the disease (Chételat et al., 2002; Pennanen, 2005), including the 

hippocampus changes (Chételat et al., 2008).  

 

On the other hand, interpretation of VBM-processed data across multiple studies 

might be challenging, owing to the difference of sample sizes, preprocessing steps 

and MRI protocols, which might affect the results (Whitwell, 2009). In addition to 

that, the efficiency of the spatial normalization might be questioned, owing to the 

inter-individual brain differences in terms of Sulci and Gyri, thus an effective 

registration scheme must be applied to address such a challenge (Kurth et al., 

2015). 

 

Compared to other methods of volume analysis, VBM showed to be better than 

manually traced ROI volume analysis in detecting volumetric changes occurring in 

the h

moderate AD subjects from normal controls (Testa et al., 2004). Compared to other 

methods, detecting hippocampus atrophy like surface based methods including 

shape analysis, it has been suggested that shape analysis is better than volume 

analysis in detecting hippocampus atrophy (Maruszak & Thuret, 2014), owing to 

its ability to foresee Dementia even in the preclinical stages (Achterberg et al., 

2013). It was suggested however, that employing both volume and shape anaylsis 

would have an edge in early predication for Dementia (Achterberg et al., 2013). In 

another study, comparing different hippocampus changes detection techniques 

such as voxel based methods, cortical thickness and hippocampus shape analysis, 

it was proposed that the voxel based techniques and shape analysis performed 

well in differentiating the AD subjects from normal controls, with higher specificity 

for the earlier (Cuingnet et al., 2011). 

 

In this study, applied VBM protocol entailed tissue segmentation technique based 

on AMAP and PVE, as well as spatial normalization technique based on DARTEL 

were employed, all of which have advantages in reliably detecting hippocampus 

shrinkage. AMAP has the advantages of considering not only each voxel class type, 

but also the relationship of each voxel with the neighboring voxels, in another 

words in can account for the spatial relationship between nearby voxels. Besides, 



It employs filtering methods, which account for the MRI signal inhomogeneities, 

which helps in tissue segmentation even in the presence of random noise and 

magnetic field intensity non-uniformity (Rajapakse, et al., 1997). PVE has the 

advantages of considering each voxel as a mixture of 3 tissue classes namely GM, 

WM and CSF, which helps in a better separation of different tissue type, that might 

aid in increasing the chances of precise estimation of each tissue volume for 

further processing steps and for later successful interpretation of the results. As a 

non-linear transformation approach, DARTEL can correct for the inter-indiviudal 

brain variability between subjects with regards to the local position, shape and 

size and thus reliable in studies comparing brain structural changes in multiple 

subjects (Ashburner, 2007; Ashburner & Friston, 2005). DARTEL has the 

advantage of performing the normalization while preserving topology (Ripollés et 

al., 2012)

invertible and quickly computed (Ashburner, 2007).  

 

Limitations 

This study has some limitations. Firstly the handedness in is not sorted as a 

variable in the ADNI cohort, so it is not regarded as a confounder, inspite of its 

possible influence on the brain structure (Good et al., 2001). Moreover, subjects in 

our cohort might be related to each other, and it has been suggested that genetic 

similarities in related individuals might affect the brain structure (Thompson et al., 

2001). Besides, our subjects were scanned in multiple sites and despite the unified 

protocol that have been implemented and the common post-acquisition quality 

control to eliminate this effect, this possible confounding effect should be taken 

into consideration because image dissimilarities caused by technical factors might 

confound the possible observed disease-related structural changes (Jovicich et al., 

2006). ADNI protocol for subjects recruitment in addition was devised to mimic a 

clinical trial population (Peterson et al., 2001) instead of an actual community 

population. Consequently our cohort had a high mean education, which was 

similar in different diagnosis group, which in turn could buffer the observed 

possible disease-related effect. It should be noted that exact reductions in different 

h

boundaries might differ with respect to the parcellation/segmentation approach. 



In addition, this study results should be compared cautiously with similar studies, 

due to the difference in sample sizes and the employed VBM steps and algorithms. 

 

 

Future Aspects  

The following aspects could be employed to possibly further add to the study. A 

Discriminant functional analysis could be done in order to know which 

h ean GMV best classifies the 5 diagnosis groups. In 

addition, this research can be done on higher hippocampus subregion 

granularities, in another words the 7 cluster solution on each Hemisphere, 

parcellated by plachti and colleagues (Plachti et al., 2019). This could help having a 

closer look on, which specifically the most affected area within each subregion is. 

This study could be done on a hippocampus model, which could be a consortium of 

the model based on multi-modal CBP presented by Plachti and colleagues (Plachti 

et al., 2019), as well as the histological model presented for example by Amunts 

and colleagues (Amunts et al., 2005), this could be a wider approach in outlining 

the possible differential affection of the hippocampus along AD progression 

because it takes into consideration the more conventional histological subfields 

organization and the relatively newer CBP approach, representing different 

aspects of hippocampus organization. A future study could add other AD markers 

in addition to the mean hippocampus GMV such as the CSF markers including beta 

amyloid (Greene & Killiany, 2012), APOE genes (Fallin et al., 2001), Functional MRI 

measurement of the blood flow in areas related to memory processing (Machulda 

et al., 2003), Glucose metabolism measurement by PET scan (Jagust et al., 2009), 

SPECT measurement of 99mTc-hexamethylpropyleneamine blood flow in certain 

brain areas (Dougall, Bruggink & Ebmeir, 2004), and Diffusion Tensor Imaging 

(DTI) measurement of the microscopic structure, represented by water molecule 

diffusivity, of some brain regions (Chua et al., 2009). Combination of different AD 

markers in one study could add a thorough view of the possible best marker or 

best combination of markers in early detecting AD, which possibly will enhance the 

ability for AD screening at different stages. 

 



 

 

 

Glossary 

 

- Declarative memory: is the gathering of learning experience data as well as facts. 

- Episodic memory: subtype of the declarative memory representing memory of 

personal events. 

- Spatial memory as well: memory for the self-location or direction to an object. 

- Relational memory: memory relating different components of an experience such 

as faces and names. 

- Explicit memory: explicit remembering of past experiences. 

- Encoding: a process, which conveys information perceived into storable 

memories. 

- Consolidation: process of storing labile memories into more stable retrievable 

ones. 

- Recollection: process of remembering of additional information about a specific 

item. 
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