000866184 001__ 866184
000866184 005__ 20210130003313.0
000866184 0247_ $$2doi$$a10.1038/s41598-019-48837-3
000866184 0247_ $$2Handle$$a2128/23230
000866184 0247_ $$2altmetric$$aaltmetric:65773381
000866184 0247_ $$2pmid$$apmid:31467321
000866184 0247_ $$2WOS$$aWOS:000483017100042
000866184 037__ $$aFZJ-2019-05355
000866184 082__ $$a600
000866184 1001_ $$00000-0002-7898-5087$$aRogala, M.$$b0$$eCorresponding author
000866184 245__ $$aSelf-reduction of the native TiO2 (110) surface during cooling after thermal annealing – in-operando investigations
000866184 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2019
000866184 3367_ $$2DRIVER$$aarticle
000866184 3367_ $$2DataCite$$aOutput Types/Journal article
000866184 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573128813_10911
000866184 3367_ $$2BibTeX$$aARTICLE
000866184 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866184 3367_ $$00$$2EndNote$$aJournal Article
000866184 520__ $$aWe investigate the thermal reduction of TiO2 in ultra-high vacuum. Contrary to what is usually assumed, we observe that the maximal surface reduction occurs not during the heating, but during the cooling of the sample back to room temperature. We describe the self-reduction, which occurs as a result of differences in the energies of defect formation in the bulk and surface regions. The findings presented are based on X-ray photoelectron spectroscopy carried out in-operando during the heating and cooling steps. The presented conclusions, concerning the course of redox processes, are especially important when considering oxides for resistive switching and neuromorphic applications and also when describing the mechanisms related to the basics of operation of solid oxide fuel cells.
000866184 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000866184 588__ $$aDataset connected to CrossRef
000866184 7001_ $$0P:(DE-Juel1)130545$$aBihlmayer, G.$$b1
000866184 7001_ $$0P:(DE-HGF)0$$aDabrowski, P.$$b2
000866184 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, C.$$b3$$ufzj
000866184 7001_ $$0P:(DE-HGF)0$$aWrana, D.$$b4
000866184 7001_ $$0P:(DE-HGF)0$$aKrok, F.$$b5
000866184 7001_ $$0P:(DE-HGF)0$$aKlusek, Z.$$b6
000866184 7001_ $$0P:(DE-Juel1)130993$$aSzot, K.$$b7$$ufzj
000866184 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-019-48837-3$$gVol. 9, no. 1, p. 12563$$n1$$p12563$$tScientific reports$$v9$$x2045-2322$$y2019
000866184 8564_ $$uhttps://juser.fz-juelich.de/record/866184/files/s41598-019-48837-3.pdf$$yOpenAccess
000866184 8564_ $$uhttps://juser.fz-juelich.de/record/866184/files/s41598-019-48837-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866184 909CO $$ooai:juser.fz-juelich.de:866184$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130545$$aForschungszentrum Jülich$$b1$$kFZJ
000866184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b3$$kFZJ
000866184 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130993$$aForschungszentrum Jülich$$b7$$kFZJ
000866184 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000866184 9141_ $$y2019
000866184 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866184 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866184 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866184 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866184 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000866184 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2017
000866184 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866184 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866184 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866184 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866184 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866184 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866184 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866184 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866184 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866184 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866184 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866184 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866184 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866184 920__ $$lyes
000866184 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000866184 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000866184 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x2
000866184 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x3
000866184 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x4
000866184 980__ $$ajournal
000866184 980__ $$aVDB
000866184 980__ $$aUNRESTRICTED
000866184 980__ $$aI:(DE-Juel1)IAS-1-20090406
000866184 980__ $$aI:(DE-Juel1)PGI-1-20110106
000866184 980__ $$aI:(DE-Juel1)PGI-7-20110106
000866184 980__ $$aI:(DE-82)080009_20140620
000866184 980__ $$aI:(DE-82)080012_20140620
000866184 9801_ $$aFullTexts