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Titanium dioxide is a model material for a wide group of transition metal oxides, which makes it highly impor-
tant for understanding the fundamental mechanisms of redox processes present in those materials. �ese redox 
processes in titanium dioxide itself can be exploited for numerous applications, which range from catalysis to 
neuromorphic computing1–5. In this work, we present a new element that is the key for correctly modelling the 
reduction of metal oxides. We extend the existing description of the thermal reduction mechanisms of the TiO2 
surface by the newly discovered phenomenon of self-reduction, which ultimately determines the spatial distribu-
tion of the �nal stoichiometry.

�e �uctuations in stoichiometry of metal oxides de�ne all of their crystallographic and electronic properties 
and, consequently, their potential applications6,7. �e initially insulating and chemically inactive TiO2 can be 
transformed into its non-stoichiometric form by the partial removal of oxygen ions. For very small deviations 
from stoichiometry, the isolated point defects, such as oxygen vacancies and titanium interstitials, are predom-
inant in reduced material8–11. However, even point defects with relatively low concentrations have a strong ten-
dency to agglomerate into one-dimensional defect structures7,12. When the o�-stoichiometry of the TiO2-x crystal 
is higher, the defects start to arrange into planes13, which then causes a shearing process14 and �nally transforms 
TiO2 into Magnéli phases (TinO2n-1)

15,16. In real materials, which are initially non-perfect in their form, all of the 
mentioned features should be taken into account when searching for the mechanisms of any observed and inves-
tigated phenomena17.

TiO2 is considered as a prototype memristive material17,18, where resistive switching (RS) phenomena are 
based on the modi�cations of local stoichiometry. �e redox processes leading to RS are caused by electrical or 
temperature gradients19,20. At the same time the local electrical currents during RS can raise the temperature in 
the conducting region much above 1000 °C21. �is process seems to be crucial for the understanding of the details 
of redox mechanisms. For above reasons we intend to address here the processes responsible for thermal reduc-
tion of near surface (near electrode) region of TiO2 where RS processes occurred.
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It should be noted, that the reduction of TiO2 can be obtained in a variety of ways. Apart from thermal treat-
ment17 such process can be forced also by ion sputtering6,22, electron irradiation23 or electro-degradation17. �e 
most common procedure of TiO2 reduction is based on the cycling of Ar+ sputtering and sample annealing in 
ultra-high vacuum (UHV) conditions24. Such preparation method allows to achieve perfect surface reconstruc-
tions, but can complicate the structure of the deeper layers and the bulk. During the Ar+ sputtering step a signif-
icant disorder is introduced to the material22 and only the further step of annealing allows for surface structure 
restoration. �e second common method of oxide reduction, on which we will focus in this work, is thermal 
annealing of the pristine/stoichiometric material in the oxygen-de�cient atmosphere, such as under vacuum con-
ditions17,25. �e two above-mentioned common methods of preparation are essentially di�erent when consider-
ing the e�ects of thermal annealing processes. �e X-ray photoelectron spectroscopy (XPS) measurements allow 
for observation of the changes in surface stoichiometry (oxidation states of Ti ions) resulting from annealing. 
Such changes go in fully opposite directions when we consider the two mentioned most common approaches for 
the metal oxides reduction. When the pristine metal oxide sample is annealed in ultra-high vacuum (UHV) con-
ditions, the thermal treatment is the main factor which results in surface reduction. �is is visible for the sample 
whose spectra are shown in Fig. 1(a,b). Pristine material (Fig. 1(a)) was annealed in UHV at 1100 °C, which led to 
surface reduction and transition of a part of Ti4+ ions to lower (3+) oxidation state (see Fig. 1(b)). �is indicates 
that the thermal annealing process allows for generation of defects in initially pristine material. We are dealing 
with the opposite situation when applying the reduction process based on cycling of Ar+ sputtering and sample 
annealing in UHV. �is method, as shown frequently in the literature, allows for obtaining perfect surface recon-
structions24, but contains an initial step of Ar+ sputtering, which �rstly signi�cantly disturbs the native structure 
of the metal oxide. �is is visible in Fig. 1(c) where for a slightly sputtered sample intense changes in the stoichi-
ometry are observed (over 50% of Ti ions have changed their oxidation state). In this method of preparation the 
thermal annealing step is not intended to reduce (as this is the role of the sputtering), but to re-oxidize the surface. 
As presented in Fig. 1(d) the initially sputtered sample a�er thermal annealing in 700 °C completely recovered its 

Figure 1. �e XPS Ti 2p core line spectra showing the results of thermal annealing of the TiO2 crystal in two 
di�erent cases, 1: when the pristine sample (presented in part a) is annealed (1100 °C; 4 h) (presented in part 
b) and 2: when previously Ar + sputtered sample (ion energy 2 kV; 2 min; 10 µA/cm2) (presented in part c) is 
annealed (700 °C; 30 min) (d). In both cases the thermal annealing caused opposite results in stoichiometry 
of the surface of material, which is visible as appearance or disappearance of the indication of lower oxidation 
states (Ti3+ or Ti2+).
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stoichiometry. �is is possible by the re-segregation of ions during thermal treatment, but it should be noticed 
that such segregation and surface oxidation takes place in an initially signi�cantly disturbed crystallographic 
structure. In contrast, in our work we have concentrated on single thermal reduction process, which in its initial 
step allows for generation of defects in nearly stoichiometric, nearly perfect crystallographic structure, which 
is especially important i.a. when analysing the resistive switching processes26 and their further applications for 
neuromorphic computing. At the same time this method can give the access to observing the basic phenomena 
occurring in native (nearly pristine) crystals of metal oxides.

We have shown previously that the thermal reduction can cause more signi�cant changes in the stoichiometry 
of the surface than of the bulk (visible as di�erences in phase composition)17. However, this analysis was sup-
ported by the measurements a�er cooling the samples down to room temperature. In this paper we investigate the 
kinetics of defect formation during annealing and cooling. Surprisingly, we prove that the most intense reduction 
of the surface occurs not at elevated temperatures but during the cooling process and is forced by the in�uence of 
the bulk. Such self-reduction in the volume of the crystal is a function of the temperature and can occur as a result 
of di�erences in the energies of defect formation in the bulk and in the surface region, which leads to the reseg-
regation of the defects in the material. In contrast to a number of mass transfer processes presented previously 
for crystals prepared by cycling of Ar+ sputtering11,27, we describe here the basic phenomena occurring in nearly 
pristine material. �e analyses presented were possible on the basis of the XPS investigation of the chemical states 
of TiO2 surface in-operando we performed during the heating and cooling processes. �is unique approach allows 
the separation of the processes of oxygen e�usion8 and the resegregation of defects between the surface layer and 
crystal interior. With our in-operando investigations, we detected the phenomena which should be considered 
when analysing the redox processes in transition metal oxides. Our �ndings are especially important for the 
description of basic mechanisms behind resistive switching20 and also for optimization of solid oxide fuel cells 
(SOFCs)28–31. As the SOFC commonly operate at temperatures 500–1000 °C, it is crucial to understand the defect 
migration under such conditions and their evolution upon heating and cooling.

�e pristine rutile TiO2 (110) crystal was introduced to the UHV chamber and heated up to 200 °C in order to 
partially remove the physisorbates (as H2O, OH). At the same time, the XPS measurements were performed. �e 
deconvolution of the Ti 2p core line was used to estimate the reduction level of the crystal surface. For the stoi-
chiometric rutile the Ti 2p is a doublet line (2p1/2 and 2p3/2) containing only the signal from Ti4+ states22. When 
surface layer is reduced, the lower oxidation states (3+ or 2+) can be identi�ed as additional doublets shi�ed to 
lower binding energies relative to Ti4+. �e shi�s are approximately 1.8 eV and 3.8 eV for 3+ and 2 + states. As 
is visible in Fig. 2(a), the spectrum for a pristine sample shows only a doublet coming from Ti4+ states with the 
binding energy of Ti 2p3/2 line close to 459.0 eV, which indicates correct stoichiometry. A similar spectrum is 
observed in Fig. 2(b) for the sample during annealing at 1000 °C. In this case, a slight thermal broadening of the 
core line, proportional to kT is visible, but no evidence of the reduction process is observed by XPS. �e e�usion 
of oxygen, which must occur at this temperature17 is in our case too weak to be noticed with the changes in the 
global stoichiometry. �is situation persists when the sample is cooled down and the XPS measurement is per-
formed at room temperature (Fig. 2(c)). �is indicates that a few hours of reduction in the UHV conditions (see 
the annealing times and temperatures described in caption of Fig. 2) were not enough to reach the reduction level, 
which is detectable in XPS measurements with a resolution close to 0.5% (i.e., Ti3+/Ti4+ < 0.005). However, it 
should be noticed that at the same time, the sample is slightly reduced, as inferred from its electronic properties7. 
�e conditions of thermal reduction described are su�cient for a transformation of TiO2 from the insulating to 
the semiconducting or metallic state7,17. �is, however, does not necessarily imply a high average concentration 
of defects, which could be detectable with XPS, but can be related with more local changes in the surface and 
subsurface layer26. Additionally, it should be stressed that, the applied reduction process is thermally driven and 
should not be compared to the commonly used preparation method when the TiO2 sample is in the galvanic con-
tact with the heater and a part of the electric current �ows through the crystal supporting the reduction process 
by the electro-degradation mechanism. Also when performing thermal annealing under the presence of a getter 
material, such as Si, the oxygen activity can be lowered signi�cantly32. With these methods, the noticeable (by 
XPS) reduction can be achieved for temperatures lower than 1000 °C. In the presented study the in�uence of the 
factors which support reduction (as the presence of getter materials in annealed area) is signi�cantly limited. �is 
is related to the construction of the sample holder that allows for high temperature annealing in strictly con�ned 
volume, which was a requirement of achieving the possibility of keeping ultra-high vacuum conditions during 
measurements. Such experimental approach can limit the e�ciency of the reduction when compared to previ-
ously published results26.

As we had not observed a signi�cant reduction a�er heating up to 1000 °C, we increased the annealing temper-
ature to 1100 °C and measured XPS spectra in-operando. �e result presented in Fig. 2(d) indicates no presence 
of Ti3+ oxidation states on the surface. �is shows that again although the oxygen e�usion corresponding to the 
applied annealing condition must introduce some defects17, it is not e�ective enough to be noticed by XPS. �e 
situation changes dramatically a�er cooling the sample. �e spectra measured at room temperature (presented 
in Fig. 2(e)) shows the appearance of the second doublet with the binding energy of Ti 2p3/2 line close to 457.2 eV, 
which indicate the presence of Ti3+ oxidation states. �e relative intensities of particular lines prove the reduc-
tion process which leads to relatively high concentration of titanium ions in lower oxidation states in the surface 
layer (approximately 12% of Ti3+, which corresponds to Ti/O ratio of 0.53). �is indicates that the observed main 
reduction process of the near surface region of TiO2 occurs during the cooling of the sample from high temper-
ature and not during annealing at the maximal temperature, which would be more intuitive. Furthermore, when 
the sample is heated back up to 1100 °C and kept at this temperature during measurements, the surface reduction 
level decreases again. �e spectra presented in Fig. 2(f) show that further heating caused the decrease of the Ti3+ 
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states observed on the surface to about one third. �is means that the heating causes the changes in the defects 
energies, which allow for di�usion of oxygen from the interior of the sample in the direction of the surface, and 
shows that such di�usion dominates over e�usion into vacuum. Furthermore, we have found that the observed 
reduction process that occurs during the cooling down of the sample from high temperatures is strictly related to 
the surface reduction. �is was checked with an additional experiment in which the surface of the reduced TiO2 
with the Ti3+ concentration, as presented in Fig. 2(e), was removed in-situ in the XPS UHV chamber with the use 
of the diamond scraper. In the uncovered the subsurface layers of the crystal no signal of Ti3+ oxidation states has 
been found (see Supplementary Information).

�e stability of the defects generated at the surface of TiO2 can be assessed by exposing the crystal to oxidizing 
conditions. Figure 3 shows the comparison of the XPS spectra a�er reduction and oxidation of the surface; addi-
tionally, the spectrum measured on the pristine TiO2 is presented as a reference. �e oxidizing process was per-
formed at room temperature, so only transformation of the defects with a high a�nity to the oxygen can occur. 
When comparing the Ti 2p lines (Fig. 3(a)), the decrease of the Ti3+ ions concentration a�er oxidizing is visible. 
�is indicates that the main defects previously presented near the surface can be reoxidized at room temperature 

Figure 2. �e evolution of Ti 2p XPS spectrum during particular stages of heating and cooling; (a) measurements 
on pristine sample during annealing at 200 °C before the reduction process; (b) measurements in 1000 °C (the 
sample was previously annealed in 700, 800, 900 and 1000 °C for 4 + 4 + 4 + 3 hours); (c) at room temperature 
(a�er cooling down from 1000 °C, the total time of annealing in 1000 °C was 4 h); (d) at 1100 °C (the same sample 
a�er additional 3 h annealing in 1100 °C); (e) at room temperature (a�er cooling down from 1100 °C, the total time 
of annealing in 1100 °C was 4 h); �e relative concentrations of Ti3+ are marked and also present in plot (f).
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and because of that are rather not related with generation of new stable phases in the rutile structure (such as 
Magnéli phases). E�cient reoxidation at room temperature can occur for point defects (such as oxygen vacan-
cies) or for a relatively unstable cluster of defects such as line defects26,33. Hence such defects should be consider 
as mainly present in the investigated sample. However, as a�er oxidation the concentration of Ti3+ ions does not 
vanish completely, but remains at the level of 2%, we can assume that also some more stable nonstoichiometric 
clusters were in the minority generated during the reduction process. �e changes observed in the Ti 2p line are 
accompanied by the changes visible in the valence band structure, as presented in Fig. 3(d). �e distinct Ti 3d 
state present in the band gap of the crystal a�er reduction is signi�cantly lower a�er oxidation, which indicates 
that the electrical conductivity of the reduced TiO2 surface is highly in�uenced by the presence of oxygen in the 
crystal surroundings. Taking into account that the reoxidation process takes place at room temperature, we can 
assume that the main defects in the surface layer are oxygen vacancies. �e reoxidation of titanium interstitials 
would require Ti ions migration10 and will be ine�ective in room temperature8. �e spectra presented in Fig. 3 
additionally indicate the lack of carbon compounds on the TiO2 surface a�er the reduction process. �is is visible 
in both the vanishing of the C 1 s signal (Fig. 3(c)) and the increasing of the symmetry of the O 1 s line (Fig. 3(b)) 
a�er reduction. �e carbon-based contamination of the TiO2 surface is intended to desorb during annealing of 
the crystal above 700 °C34, but what is important for the described processes is that it also does not reappear on 
the surface during cooling down to room temperature, when the reduction of the surface occurs. Furthermore, 
carbon does not play any role during the observed reoxidation. Additionally comparing the Ti 2p and O 1 s line 
a�er annealing con�rms the pure chemical character of splitting the Ti 2p line during reduction (for 4+ and 3+) 
and excludes the charging e�ect. If the discussed changes came from charging e�ect, they would also be visible on 
the O1s line (which in our case is una�ected).

Figure 3. �e XPS spectra for the pristine TiO2 sample (recorded at 200 °C) – black lines, for the sample a�er 
annealing at 1100 °C – red dashed lines, and for the same sample a�er exposition to 6 L of O2 – blue dotted 
lines. �e parts (a,b) and (c) present the titanium, oxygen and carbon core lines, respectively. Part (d) shows the 
valence band spectra, with the inset presenting the magni�cation of the band gap region, where Ti 3d states can 
occur.
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�e conductivity of the surface that was reduced during cooling down from 1100 °C is relatively high, which is 
visible in the LC-AFM35 results presented in Fig. 4(a) and con�rmed by the observation of valence band spectra 
(see Supplementary Information). However, the defects responsible for the presence of the electrical conductivity 
of the surface layer are easily oxidized when the surface of the reduced crystal is exposed to oxidizing condi-
tions36. �e LC-AFM map of the sample a�er having been oxidized at room temperature is presented in Fig. 4(b), 
showing the dramatic decrease in the local conductivity. During oxidation, the surface is easily transformed back 
into the insulating state at some points, but non-zero conductivity spots, which are probably the exits of the net-
work of conducting �rmaments, remain visible26,34. �is is accompanied by the decrease in the concentration of 
Ti3+ ions in the near surface region, as already discussed.

As presented in these experiments, the signi�cant surface reduction occurred during cooling, a fact that 
should be explained by the internal ion transfer between the surface and bulk. To rationalize these �ndings, we 
look at the energetics of oxygen defects in TiO2 in bulk and at the (110) surface. Vacancy formation energies have 
been calculated using density functional theory (DFT), with di�erent authors �nding that at the surface, this 
energy can be about 0.8 eV lower than in the bulk37–41. Of course this value is just an inner energy while formation 
enthalpy will include an entropic contribution, both from the con�gurational and vibrational entropy. To estimate 
the latter in a crude fashion, we can follow the model of Vineyard and Dienes42 and realize that the number of bro-
ken bonds at the surface is one less than in the bulk and assume that the vibrational frequency of a broken bond 
is reduced by a factor of 2. At this limit, we expect to gain 0.3 kT per vacancy at the surface, i.e., about 35 meV at 
1100 °C. Although the estimation is crude, it is doubtful that vibrational entropy will be su�cient to overcome 
the vacancy formation energy di�erence mentioned above. If we want to determine a layer-dependent vacancy 
concentration pro�le that depends on a layer-dependent vacancy formation enthalpy, the vacancy density at the 
surface is given by:

= ⋅
∆ ∆−

c c e (1)surf bulk

E kT S

kT
v

where ∆E is the vacancy formation energy di�erence between the bulk and surface, while ∆Sv is the correspond-
ing di�erence in the vibrational entropy (more details are presented in Supplementary Information). At the limit 
of high defect densities, it is necessary to consider two e�ects, namely: the high concentration of defects can lead 
to a clustering of oxygen vacancies, both in bulk and at the surface. �is will considerably modify the vacancy 
formation energies, e.g., the linear arrangements of vacancies were predicted to have 1.1 eV lower formation ener-
gies than those isolated in the bulk43, while on the surface, DFT calculations predicted that a divacancy is 0.25 eV 
more stable than two isolated oxygen vacancies41. Since these energies sum up to a small value and they were 
obtained using di�erent computational models, we simulated two setups of bulk and surface clustered defects in a 
(110) oriented 5 layer TiO2 �lm with an in-plane 3 × 2 unit cell, resulting in 174 atoms and 6 vacancies that were 
clustered linearly in the bulk or con�ned to the surface (Fig. 5 insets of panels (a,b)). We used DFT + U method 
as described by Park et al.44. �e values for Up and Ud were 6 and 8 eV, respectively, to obtain a good description of 
the bulk band gap (2.7 eV). �e full-potential linearized augmented plane wave method in thin �lm geometry45 
as implemented in the FLEUR code46 was employed with a product mu�n-tin radii time plane wave cut-o� of 7.1 
and a sampling of the reciprocal space with a 2 × 3 k-mesh. All atomic positions were allowed to relax until the 
forces did not exceed 60 meV/A. �e density of the states shows that the former case gives rise to a broad conduc-
tion band through the �lm, which is quantized due to the �nite �lm thickness (Fig. 5(a)), while the latter exhibits 
shallow states at the conduction band and a spin-polarized, in-gap state (Fig. 5(b)). As per oxygen vacancy, it 
turns out that the arrangement at the surface is now 57 meV more favourable than the �lament threading the �lm. 
Keeping in mind that these are only two favourable arrangements out of a few that were investigated and, in real-
ity, that a statistical distribution over many more con�gurations will be present, we insert this energy di�erence 

Figure 4. �e LC-AFM map of local conductivity of the TiO2 surface (recorded at room temperature) for: (a) 
the sample a�er annealing at 1100 °C; and (b) for the same sample a�er exposition to 6 L of O2. �e polarization 
between the AFM probe and surface was 100 mV.



7SCIENTIFIC REPORTS |         (2019) 9:12563  | 

www.nature.com/scientificreportswww.nature.com/scientificreports/

into Equation (1). At 1100 °C, the ratio of surface to bulk vacancies is found to be about 1.2, while cooling to room 
temperature increases this ratio to 6.7, suggesting a substantial increase of vacancies at the surface due to cooling. 
As magnetic order also plays a dominant role in the stabilization of the surface vacancy ordering41, the loss of 
magnetic ordering at higher temperatures might also lead to a destabilization of surface vacancies at high temper-
atures. Despite the uncertainties of the theoretical model when used to describe a situation far from equilibrium, 
we estimate that the energetics of bulk- and surface vacancies can be comparable within a range that corresponds 
to the temperature variations occurring during the reduction process. Such a case permits the observation of a 
highly e�cient self-reduction phenomenon, wherein an initially slightly reduced material from the internal pro-
cesses leads to the formation of a signi�cantly reduced thin layer in the surface region. In such a model, the sur-
face reduction is not an independent process described only by the temperature and partial oxygen pressure, but 
is generally a bulk-assisted phenomenon that leads to the resegregation of defects. �e observed cooling-induced 
resegregation should, however, mainly occur in the temperature regime that provides conditions for the migra-
tion of defects7. In the case presented, the main reduction occurs during cooling down of the sample, but when 
the temperature was still above 500 °C. �e concentration of Ti3+ oxidation states measured at 600 °C was at the 
level of 8% (see Supplementary Information), while it increased to 12% a�er cooling down to room temperature.

In conclusion, we found that the thermal reduction observed for the TiO2 surfaces annealed in UHV conditions 
is, in fact, the result of a bulk-assisted process, when the crystallographic defects migrate from the bulk to the 
surface during cooling of the sample crystal. Our theoretical analyses are strongly supported by in-operando 
XPS measurements during annealing of the TiO2 crystal. As we observed at elevated temperatures, the removal 
of oxygen from the material occurs, but the concentration of defects in the surface layer is relatively low. �is 
changes during the cooling down process, when the location of the defects on the surface becomes signi�cantly 
more favourable than in the bulk. During cooling, the oxygen is transferred in the direction of the bulk in order 

Figure 5. (a) Density of states (DOS) of a (110) oriented rutile TiO2 �lm with six oxygen vacancies in a quasi-
linear arrangement, threading the �lm. A metallic band appears in the bulk band gap and is quantized due to 
the �nite �lm thickness into 6 peaks. Black and red lines show the spin-up and spin-down DOS, respectively. 
An isosurface of the charge density associated with the in-gap states is shown in yellow in the inset. Blue and red 
atoms symbolize Ti and O, respectively. �e in-plane unit cell is 3 × 2 and the DOS is given per in-plane unit 
cell. (b) �e DOS of the same �lm with vacancies now con�ned to the upper and lower surface (one vacancy per 
two in-plane unit cells). �e charge density of the shallow states at the conduction band is shown in the inset. 
�e colour code is the same as in panel (a).
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to minimize the energy of the system, which leads to self-reduction of the surface layer. �e described redox 
mechanism can play a signi�cant role in the formation of non-stoichiometric Ti-O systems. As TiO2 is a model 
oxide system, the �ndings presented should be taken into account when studying the basic phenomena behind 
transition metal oxide-based applications, especially in those operating at high temperatures, such as SOFCs. �e 
self-reduction during cooling should be also carefully considered when analysing the behaviour of memristive/
neuromorphic devices in which current �ow may lead to rise of local temperatures.

In our investigations we used rutile TiO2 single crystal with epitaxy-ready (110) 
surface. �e crystal was annealed in-situ in the UHV chamber of the XPS setup. For the XPS investigations, the 
monochromatic Al K-alpha source was used, the XPS sampling area had the diameter close to 1 mm and the 
sample-detector angle was set to 45°. �e customized resistive heating stage with a low power heating element 
allowed for performance of the XPS measurements during annealing (in-operando). �e pressure level in the 
chamber during annealing of the sample at 1100 °C was kept below 7·10−9 mbar, which facilitates constant XPS 
probing. �e 5 × 5 × 0.5 mm3 TiO2 crystal was mounted on a ceramic heater (pyrolytic graphite composite ele-
ment covered by pyrolytic boron nitride) by clamping block. �e sample area available for measurements was 
3 × 3 mm2. Both heater and clamping block were separated from the sample with platinum foil and the grounding 
of the sample was provided by a platinum electrode. �e heating temperature was measured on the clamping 
block near the surface of the sample by S type thermocouple (platinum rhodium/ platinum), which provided 
the accuracy of measurements of sample temperature better than 35 °C (con�rmed also by pyrometric method). 
�e charging compensation for unreduced samples during XPS measurement was ensured by the electron gun, 
however for temperatures above 300 °C we observe no charging e�ect (probably because of the slight reduction 
of material) and the charge compensation was not needed. �e UHV chamber was equipped with a diamond 
scraper tool, allowing for the in-situ removal of the surface layer. �e UHV chamber was also equipped with a 
system allowing for dosing of high purity (99.9999%) O2 gas and Ar+ ion sputtering gun. A similar heating stage 
and dosing system were mounted in the atomic force microscopy (AFM) chamber. �e AFM setup allowed for 
high resolution local conductivity measurements (LC-AFM)35 with the use of a Pt-coated AFM tip.

Data Availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information �les).
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