000866196 001__ 866196
000866196 005__ 20230426083215.0
000866196 0247_ $$2doi$$a10.1103/PhysRevB.100.174505
000866196 0247_ $$2ISSN$$a0163-1829
000866196 0247_ $$2ISSN$$a0556-2805
000866196 0247_ $$2ISSN$$a1050-2947
000866196 0247_ $$2ISSN$$a1094-1622
000866196 0247_ $$2ISSN$$a1095-3795
000866196 0247_ $$2ISSN$$a1098-0121
000866196 0247_ $$2ISSN$$a1538-4489
000866196 0247_ $$2ISSN$$a1550-235X
000866196 0247_ $$2ISSN$$a2469-9950
000866196 0247_ $$2ISSN$$a2469-9969
000866196 0247_ $$2Handle$$a2128/23240
000866196 0247_ $$2WOS$$aWOS:000495041000002
000866196 0247_ $$2altmetric$$aaltmetric:70077296
000866196 037__ $$aFZJ-2019-05367
000866196 082__ $$a530
000866196 1001_ $$0P:(DE-HGF)0$$aWomack, F. N.$$b0
000866196 245__ $$aCritical field behavior of a multiply connected superconductor in a tilted magnetic field
000866196 260__ $$aWoodbury, NY$$bInst.$$c2019
000866196 3367_ $$2DRIVER$$aarticle
000866196 3367_ $$2DataCite$$aOutput Types/Journal article
000866196 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573196963_21962
000866196 3367_ $$2BibTeX$$aARTICLE
000866196 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866196 3367_ $$00$$2EndNote$$aJournal Article
000866196 520__ $$aWe report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66-nm-diameter holes having a lattice constant of 100 nm. The critical field transition of the Al films was measured near Tc as a function of field orientation relative to the substrate normal. With the field oriented along the normal (θ=0), we observe reentrant superconductivity at a characteristic matching field Hm=0.22 T, corresponding to one flux quantum per hole. In tilted fields, the position H∗ of the reentrance feature increases as sec(θ), but the resistivity traces are somewhat more complex than those of a continuous superconducting film. We show that when the tilt angle is tuned such that H∗ is of the order of the upper critical field Hc, the entire critical region is dominated by the enhanced dissipation associated with a submatching perpendicular component of the applied field. At higher tilt angles a local maximum in the critical field is observed when the perpendicular component of the field is equal to the matching field.
000866196 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000866196 542__ $$2Crossref$$i2019-11-06$$uhttps://link.aps.org/licenses/aps-default-license
000866196 588__ $$aDataset connected to CrossRef
000866196 7001_ $$00000-0002-8412-0303$$aAdams, P. W.$$b1
000866196 7001_ $$0P:(DE-HGF)0$$aValles, J. M.$$b2
000866196 7001_ $$0P:(DE-Juel1)151130$$aCatelani, Gianluigi$$b3$$eCorresponding author$$ufzj
000866196 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.100.174505$$bAmerican Physical Society (APS)$$d2019-11-06$$n17$$p174505$$tPhysical Review B$$v100$$x2469-9950$$y2019
000866196 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.100.174505$$gVol. 100, no. 17, p. 174505$$n17$$p174505$$tPhysical review / B$$v100$$x2469-9950$$y2019
000866196 8564_ $$uhttps://juser.fz-juelich.de/record/866196/files/PhysRevB.100.174505.pdf$$yOpenAccess
000866196 8564_ $$uhttps://juser.fz-juelich.de/record/866196/files/PhysRevB.100.174505.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866196 909CO $$ooai:juser.fz-juelich.de:866196$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866196 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b3$$kFZJ
000866196 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000866196 9141_ $$y2019
000866196 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866196 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866196 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000866196 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV B : 2017
000866196 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866196 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866196 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866196 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866196 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866196 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866196 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866196 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866196 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866196 920__ $$lyes
000866196 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x0
000866196 980__ $$ajournal
000866196 980__ $$aVDB
000866196 980__ $$aUNRESTRICTED
000866196 980__ $$aI:(DE-Juel1)PGI-11-20170113
000866196 9801_ $$aFullTexts
000866196 999C5 $$1M. Tinkham$$2Crossref$$oM. Tinkham Introduction to Superconductivity 1996$$tIntroduction to Superconductivity$$y1996
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.133.A97
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1066144
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.107.067003
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.95.094520
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.74.3241
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.688
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.927
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.92.107005
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.1543
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.107008
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.037004
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.212507
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.61.R894
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.092509
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1149587
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.064528
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s42005-018-0079-3
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.R2952
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.104515
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.87.020507
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.020508
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.129.2413
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.9.266
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1777362
000866196 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.077003