001     866196
005     20230426083215.0
024 7 _ |a 10.1103/PhysRevB.100.174505
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/23240
|2 Handle
024 7 _ |a WOS:000495041000002
|2 WOS
024 7 _ |a altmetric:70077296
|2 altmetric
037 _ _ |a FZJ-2019-05367
082 _ _ |a 530
100 1 _ |a Womack, F. N.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Critical field behavior of a multiply connected superconductor in a tilted magnetic field
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573196963_21962
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66-nm-diameter holes having a lattice constant of 100 nm. The critical field transition of the Al films was measured near Tc as a function of field orientation relative to the substrate normal. With the field oriented along the normal (θ=0), we observe reentrant superconductivity at a characteristic matching field Hm=0.22 T, corresponding to one flux quantum per hole. In tilted fields, the position H∗ of the reentrance feature increases as sec(θ), but the resistivity traces are somewhat more complex than those of a continuous superconducting film. We show that when the tilt angle is tuned such that H∗ is of the order of the upper critical field Hc, the entire critical region is dominated by the enhanced dissipation associated with a submatching perpendicular component of the applied field. At higher tilt angles a local maximum in the critical field is observed when the perpendicular component of the field is equal to the matching field.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
542 _ _ |i 2019-11-06
|2 Crossref
|u https://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Adams, P. W.
|0 0000-0002-8412-0303
|b 1
700 1 _ |a Valles, J. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Catelani, Gianluigi
|0 P:(DE-Juel1)151130
|b 3
|e Corresponding author
|u fzj
773 1 8 |a 10.1103/physrevb.100.174505
|b American Physical Society (APS)
|d 2019-11-06
|n 17
|p 174505
|3 journal-article
|2 Crossref
|t Physical Review B
|v 100
|y 2019
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.100.174505
|g Vol. 100, no. 17, p. 174505
|0 PERI:(DE-600)2844160-6
|n 17
|p 174505
|t Physical review / B
|v 100
|y 2019
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866196/files/PhysRevB.100.174505.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866196/files/PhysRevB.100.174505.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866196
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts
999 C 5 |1 M. Tinkham
|y 1996
|2 Crossref
|t Introduction to Superconductivity
|o M. Tinkham Introduction to Superconductivity 1996
999 C 5 |a 10.1103/PhysRev.133.A97
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1066144
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.107.067003
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.95.094520
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.74.3241
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.688
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.65.927
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.92.107005
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.1543
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.107008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.88.037004
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.212507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.61.R894
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.092509
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1149587
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.064528
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/s42005-018-0079-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.58.R2952
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.104515
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.87.020507
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.020508
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.129.2413
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.9.266
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1777362
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.077003
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21