Hauptseite > Publikationsdatenbank > Critical field behavior of a multiply connected superconductor in a tilted magnetic field > print |
001 | 866196 | ||
005 | 20230426083215.0 | ||
024 | 7 | _ | |a 10.1103/PhysRevB.100.174505 |2 doi |
024 | 7 | _ | |a 0163-1829 |2 ISSN |
024 | 7 | _ | |a 0556-2805 |2 ISSN |
024 | 7 | _ | |a 1050-2947 |2 ISSN |
024 | 7 | _ | |a 1094-1622 |2 ISSN |
024 | 7 | _ | |a 1095-3795 |2 ISSN |
024 | 7 | _ | |a 1098-0121 |2 ISSN |
024 | 7 | _ | |a 1538-4489 |2 ISSN |
024 | 7 | _ | |a 1550-235X |2 ISSN |
024 | 7 | _ | |a 2469-9950 |2 ISSN |
024 | 7 | _ | |a 2469-9969 |2 ISSN |
024 | 7 | _ | |a 2128/23240 |2 Handle |
024 | 7 | _ | |a WOS:000495041000002 |2 WOS |
024 | 7 | _ | |a altmetric:70077296 |2 altmetric |
037 | _ | _ | |a FZJ-2019-05367 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Womack, F. N. |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Critical field behavior of a multiply connected superconductor in a tilted magnetic field |
260 | _ | _ | |a Woodbury, NY |c 2019 |b Inst. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1573196963_21962 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a We report magnetotransport measurements of the critical field behavior of thin Al films deposited onto multiply connected substrates. The substrates were fabricated via a standard electrochemical process that produced a triangular array of 66-nm-diameter holes having a lattice constant of 100 nm. The critical field transition of the Al films was measured near Tc as a function of field orientation relative to the substrate normal. With the field oriented along the normal (θ=0), we observe reentrant superconductivity at a characteristic matching field Hm=0.22 T, corresponding to one flux quantum per hole. In tilted fields, the position H∗ of the reentrance feature increases as sec(θ), but the resistivity traces are somewhat more complex than those of a continuous superconducting film. We show that when the tilt angle is tuned such that H∗ is of the order of the upper critical field Hc, the entire critical region is dominated by the enhanced dissipation associated with a submatching perpendicular component of the applied field. At higher tilt angles a local maximum in the critical field is observed when the perpendicular component of the field is equal to the matching field. |
536 | _ | _ | |a 144 - Controlling Collective States (POF3-144) |0 G:(DE-HGF)POF3-144 |c POF3-144 |f POF III |x 0 |
542 | _ | _ | |i 2019-11-06 |2 Crossref |u https://link.aps.org/licenses/aps-default-license |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Adams, P. W. |0 0000-0002-8412-0303 |b 1 |
700 | 1 | _ | |a Valles, J. M. |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Catelani, Gianluigi |0 P:(DE-Juel1)151130 |b 3 |e Corresponding author |u fzj |
773 | 1 | 8 | |a 10.1103/physrevb.100.174505 |b American Physical Society (APS) |d 2019-11-06 |n 17 |p 174505 |3 journal-article |2 Crossref |t Physical Review B |v 100 |y 2019 |x 2469-9950 |
773 | _ | _ | |a 10.1103/PhysRevB.100.174505 |g Vol. 100, no. 17, p. 174505 |0 PERI:(DE-600)2844160-6 |n 17 |p 174505 |t Physical review / B |v 100 |y 2019 |x 2469-9950 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/866196/files/PhysRevB.100.174505.pdf |
856 | 4 | _ | |y OpenAccess |x pdfa |u https://juser.fz-juelich.de/record/866196/files/PhysRevB.100.174505.pdf?subformat=pdfa |
909 | C | O | |o oai:juser.fz-juelich.de:866196 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)151130 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-144 |2 G:(DE-HGF)POF3-100 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2019 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV B : 2017 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-11-20170113 |k PGI-11 |l JARA Institut Quanteninformation |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-11-20170113 |
980 | 1 | _ | |a FullTexts |
999 | C | 5 | |1 M. Tinkham |y 1996 |2 Crossref |t Introduction to Superconductivity |o M. Tinkham Introduction to Superconductivity 1996 |
999 | C | 5 | |a 10.1103/PhysRev.133.A97 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1066144 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.107.067003 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.95.094520 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.74.3241 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.76.688 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.65.927 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.92.107005 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.84.1543 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.94.107008 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.88.037004 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.66.212507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.61.R894 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.73.092509 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1126/science.1149587 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.84.064528 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1038/s42005-018-0079-3 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.58.R2952 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.78.104515 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.87.020507 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevB.76.020508 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRev.129.2413 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.9.266 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1063/1.1777362 |9 -- missing cx lookup -- |2 Crossref |
999 | C | 5 | |a 10.1103/PhysRevLett.101.077003 |9 -- missing cx lookup -- |2 Crossref |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|