000866203 001__ 866203
000866203 005__ 20220930130222.0
000866203 0247_ $$2doi$$a10.1111/1751-7915.13402
000866203 0247_ $$2ISSN$$a1751-7907
000866203 0247_ $$2ISSN$$a1751-7915
000866203 0247_ $$2Handle$$a2128/24048
000866203 0247_ $$2altmetric$$aaltmetric:61499571
000866203 0247_ $$2pmid$$apmid:31162833
000866203 0247_ $$2WOS$$aWOS:000596580200022
000866203 037__ $$aFZJ-2019-05374
000866203 082__ $$a610
000866203 1001_ $$0P:(DE-Juel1)168388$$aWeihmann, Robin$$b0
000866203 245__ $$aProtocols for yTREX /Tn5‐based gene cluster expression in Pseudomonas putida
000866203 260__ $$aOxford$$bWiley-Blackwell$$c2020
000866203 3367_ $$2DRIVER$$aarticle
000866203 3367_ $$2DataCite$$aOutput Types/Journal article
000866203 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580137650_31637
000866203 3367_ $$2BibTeX$$aARTICLE
000866203 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866203 3367_ $$00$$2EndNote$$aJournal Article
000866203 520__ $$aBacterial gene clusters, which represent a genetic treasure trove for secondary metabolite pathways, often need to be activated in a heterologous host to access the valuable biosynthetic products. We provide here a detailed protocol for the application of the yTREX ‘gene cluster transplantation tool’: Via yeast recombinational cloning, a gene cluster of interest can be cloned in the yTREX vector, which enables the robust conjugational transfer of the gene cluster to bacteria like Pseudomonas putida, and their subsequent transposon Tn5‐based insertion into the host chromosome. Depending on the gene cluster architecture and chromosomal insertion site, the respective pathway genes can be transcribed effectively from a chromosomal promoter, thereby enabling the biosynthesis of a natural product. We describe workflows for the design of a gene cluster expression cassette, cloning of the cassette in the yTREX vector by yeast recombineering, and subsequent transfer and expression in P. putida. As an example for yTREX‐based transplantation of a natural product biosynthesis, we provide details on the cloning and activation of the phenazine‐1‐carboxylic acid biosynthetic genes from Pseudomonas aeruginosa in P. putidaKT2440 as well as the use of β‐galactosidase‐encoding lacZ as a reporter of production levels.
000866203 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000866203 588__ $$aDataset connected to CrossRef
000866203 7001_ $$0P:(DE-Juel1)158053$$aDomröse, Andreas$$b1
000866203 7001_ $$0P:(DE-Juel1)131426$$aDrepper, Thomas$$b2
000866203 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl‐Erich$$b3
000866203 7001_ $$0P:(DE-Juel1)131500$$aLoeschcke, Anita$$b4$$eCorresponding author$$ufzj
000866203 773__ $$0PERI:(DE-600)2406063-X$$a10.1111/1751-7915.13402$$gp. 1751-7915.13402$$n1$$p250-262$$tMicrobial biotechnology$$v13$$x1751-7915$$y2020
000866203 8564_ $$uhttps://juser.fz-juelich.de/record/866203/files/Invoice-R-2019-00353.pdf
000866203 8564_ $$uhttps://juser.fz-juelich.de/record/866203/files/Invoice-R-2019-00353.pdf?subformat=pdfa$$xpdfa
000866203 8564_ $$uhttps://juser.fz-juelich.de/record/866203/files/Weihmann_et_al-2020-Microbial_Biotechnology.pdf$$yOpenAccess
000866203 8564_ $$uhttps://juser.fz-juelich.de/record/866203/files/Weihmann_et_al-2020-Microbial_Biotechnology.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866203 8767_ $$8R-2019-00353$$92019-12-10$$d2019-12-12$$eAPC$$jZahlung erfolgt$$lDEAL: Wiley
000866203 909CO $$ooai:juser.fz-juelich.de:866203$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000866203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168388$$aForschungszentrum Jülich$$b0$$kFZJ
000866203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131426$$aForschungszentrum Jülich$$b2$$kFZJ
000866203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b3$$kFZJ
000866203 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131500$$aForschungszentrum Jülich$$b4$$kFZJ
000866203 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000866203 9141_ $$y2020
000866203 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866203 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866203 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866203 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866203 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMICROB BIOTECHNOL : 2017
000866203 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866203 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866203 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866203 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866203 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866203 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866203 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000866203 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866203 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866203 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866203 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866203 920__ $$lyes
000866203 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000866203 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000866203 980__ $$ajournal
000866203 980__ $$aVDB
000866203 980__ $$aUNRESTRICTED
000866203 980__ $$aI:(DE-Juel1)IMET-20090612
000866203 980__ $$aI:(DE-Juel1)IBG-1-20101118
000866203 980__ $$aAPC
000866203 9801_ $$aAPC
000866203 9801_ $$aFullTexts