001     866218
005     20210130003323.0
024 7 _ |a 2128/23250
|2 Handle
037 _ _ |a FZJ-2019-05385
100 1 _ |a Yegenoglu, Alper
|0 P:(DE-Juel1)161462
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Society for Neuroscience Meeting 2019
|c Chicago
|d 2019-10-19 - 2019-10-23
|w USA
245 _ _ |a Learning to Learn on High Performance Computing
260 _ _ |c 2019
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1595507729_6840
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a The simulation of biological neural networks (BNN) is essential to neuroscience. The complexity of the brain's structure and activity combined with the practical limits of in-vivo measurements have led to the development of computational models which allow us to decompose, analyze and understand its elements and their interactions.Impressive progress has recently been made in non-spiking but brain-like learning capabilities in ANNs [1, 3]. A substantial part of this progress arises from computing-intense learning-to-learn (L2L) [2, 4, 5] or meta-learning methods. L2L is a specific algorithm for acquiring constraints to improve learning performance. L2L can be decomposed into an optimizee program (such as a Kalman filter) which learns specific tasks and an optimizer algorithm which searches for generalized hyperparameters for the optimizee. The optimizer learns to improve the optimizee’s performance over distinct tasks as measured by a fitness function (Fig 1).We have developed an implementation of L2L on High Performance Computing (HPC) [6] for hyperparameter optimization of spiking BNNs as well as hyperparameter search for general neuroscientific analytics. This tool takes advantage of large-scale parallelization by deploying an ensemble of optimizees to understand and analyze mathematical models of BNNs. Improved performance for structural plasticity has been found in NEST simulations comparing several techniques including gradient descent, cross entropy, and evolutionary strategies.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
536 _ _ |0 G:(DE-Juel1)CSD-SSD-20190612
|x 3
|c CSD-SSD-20190612
|a CSD-SSD - Center for Simulation and Data Science (CSD) - School for Simulation and Data Science (SSD) (CSD-SSD-20190612)
536 _ _ |a SLNS - SimLab Neuroscience (Helmholtz-SLNS)
|0 G:(DE-Juel1)Helmholtz-SLNS
|c Helmholtz-SLNS
|x 4
536 _ _ |0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|x 5
|c PHD-NO-GRANT-20170405
|a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
700 1 _ |a Diaz, Sandra
|0 P:(DE-Juel1)165859
|b 1
|u fzj
700 1 _ |a Klijn, Wouter
|0 P:(DE-Juel1)168169
|b 2
|u fzj
700 1 _ |a Peyser, Alexander
|0 P:(DE-Juel1)161525
|b 3
|u fzj
700 1 _ |a Subramoney, Anand
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Maas, Wolfgang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Visconti, Giuseppe
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Herty, Michael
|0 P:(DE-HGF)0
|b 7
856 4 _ |u https://juser.fz-juelich.de/record/866218/files/L2LSfN2019_1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866218/files/L2LSfN2019_2.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866218/files/L2LSfN2019_1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866218
|p openaire
|p open_access
|p VDB
|p driver
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161462
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)165859
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168169
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)161525
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21