Learning to Learn on High Performance Computing Alper Yegenoglu*^{1,3}, Sandra Diaz¹, Wouter Klijn¹, Alexander Peyser¹, Anand Subramoney², Wolfgang Maass², Giuseppe Visconti³, Michael Herty³ - ¹ Simulation Lab Neuroscience, Institute for Advanced Simulation, Jülich Aachen Research Alliance, Forschungszentrum Jülich - ² Institute for Theoretical Computer Science, Graz University of Technology, Austria - ³ Institu für Geometrie und Praktische Mathematik, RWTH Aachen, Aachen - * Contact: a.yegenoglu@fz-juelich.de ## Introduction - Brain-like learning capabilities can now be produced in non-spiking neural networks using Machine Learning [1] - Learning to learn [2] is a specific optimization solution for acquiring constraints to improve learning ## Learning to learn on High Performance Computing (HPC) - Problem: Optimization problems run on single node or embarrassingly parallel on multiple nodes - Goals: Handling complex problems over large sets for arbitrary tools and algorithms parallelized on multi-node HPC High throughput hyperparameter search and optimization at (exa-) scale Our approach: L2L framework ## Learning to learn framework (L2L) - Meta-learning and hyperparameter optimization on HPC - Mostly includes gradient-free optimizers - Two loop optimization process