
Examples
L2L can engrave priors in Recurrent Spiking Neural Networks (RSNNs)
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Optimizer: Back propagation through time (BPTT)
Outer loop family of tasks: Sinusoids with different amplitudes and phases
After outer loop training, the RSNN has a prior of sinusoidal functions

Inner loop learning progress (network internal models)

[Bellec, Salaj, Subramoney et al. NeurIPS 2018]

Outer loop learning progress

L2L and structural plasticity
Optimizers: Simulated annealing, gradient descent, cross entropy 
Outer loop family of tasks: Different target average firing rate per population
Individual instances of networks 80% excitatory and 20% inhibitory in NEST[4] are parallelized with NEST. Networks 
are initialized without connections and structural plasticity is used to achieve the desired target average firing rate per 
population - inner loop
Multiple independent instances are launched on JURECA and the hyperparameters of structural plasticity are 
optimized - outer loop

Simulated Annealing Gradient descent

Hyperparameter space explora�on - Outer loop

Optimizing a Neural Network
Optimizer: Ensemble Kalman filter [3]
Outer loop family of tasks: MNIST
Updating the weights of an artificial 
neural network (e.g. Convolutional 
Network) requires only the evaluation 
of the forward propagation (no 
backprop)

Outlook
Development and benchmarking of other optimizers for biological and artificial neural networks
Better support for real time closed-loop learning setups
Supporting very long training (weeks - months)

Generations |Gradient Descent - Inner loop
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mini-batch

output probabilities

update ensembles

Ensemble Kalman Filter

optimize

using labels and output

[Diaz et. al. 2019]
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