000866224 001__ 866224
000866224 005__ 20210130003324.0
000866224 0247_ $$2doi$$a10.1039/C9PP00067D
000866224 0247_ $$2ISSN$$a1474-905X
000866224 0247_ $$2ISSN$$a1474-9092
000866224 0247_ $$2altmetric$$aaltmetric:59796524
000866224 0247_ $$2pmid$$apmid:31116222
000866224 0247_ $$2WOS$$aWOS:000477947100017
000866224 0247_ $$2Handle$$a2128/24394
000866224 037__ $$aFZJ-2019-05390
000866224 082__ $$a620
000866224 1001_ $$00000-0001-8966-9146$$aNazarenko, Vera V.$$b0
000866224 245__ $$aA thermostable flavin-based fluorescent protein from Chloroflexus aggregans : a framework for ultra-high resolution structural studies
000866224 260__ $$aCambridge$$bRoyal Society of Chemistry$$c2019
000866224 3367_ $$2DRIVER$$aarticle
000866224 3367_ $$2DataCite$$aOutput Types/Journal article
000866224 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573220557_3011
000866224 3367_ $$2BibTeX$$aARTICLE
000866224 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866224 3367_ $$00$$2EndNote$$aJournal Article
000866224 520__ $$aLight-Oxygen-Voltage (LOV) domains are conserved parts of photoreceptors in plants, bacteria and fungi that bind flavins as chromophores and detect blue light. In the past, LOV domain variants have been developed as fluorescent reporter proteins (called flavin-based fluorescent proteins; FbFPs), which due to their ability to fluoresce under anaerobic conditions, fast folding kinetics and a small size of ∼12–16 kDa are a promising reporter system for quantitative real-time analysis of biological processes. Here, we present a small thermostable flavin-based fluorescent protein CagFbFP derived from a soluble LOV domain-containing histidine kinase from the thermophilic bacterium Chloroflexus aggregans. CagFbFP is composed of 107 amino acids with a molecular weight of 11.6 kDa and consists only of the conserved LOV core domain. The protein is thermostable with a melting point of about 68 °C. It crystallizes easily and its crystals diffract to 1.07 Å. Both the crystal structure and small angle scattering data show that the protein is a dimer. Unexpectedly, glutamine 148, which in LOV photoreceptor proteins is the key residue responsible for signal transduction, occupies two conformations. Molecular dynamics simulations show that the two conformations interconvert rapidly. The crystal structure of the wild-type Chloroflexus aggregans LOV domain determined at 1.22 Å resolution confirmed the presence of two alternative conformations of the glutamine 148 side chain. Overall, this protein, due to its stability and ease of crystallization, appears to be a promising model for ultra-high resolution structural studies of LOV domains and for application as a fluorescent reporter.
000866224 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000866224 588__ $$aDataset connected to CrossRef
000866224 7001_ $$0P:(DE-HGF)0$$aRemeeva, Alina$$b1
000866224 7001_ $$00000-0002-3115-0015$$aYudenko, Anna$$b2
000866224 7001_ $$0P:(DE-Juel1)165629$$aKovalev, Kirill$$b3
000866224 7001_ $$0P:(DE-HGF)0$$aDubenko, Anton$$b4
000866224 7001_ $$00000-0002-2883-4790$$aGoncharov, Ivan M.$$b5
000866224 7001_ $$0P:(DE-HGF)0$$aKuzmichev, Pavel$$b6
000866224 7001_ $$0P:(DE-HGF)0$$aRogachev, Andrey V.$$b7
000866224 7001_ $$0P:(DE-HGF)0$$aBuslaev, Pavel$$b8
000866224 7001_ $$0P:(DE-Juel1)179072$$aBorshchevskiy, Valentin$$b9
000866224 7001_ $$00000-0003-3759-380X$$aMishin, Alexey$$b10
000866224 7001_ $$0P:(DE-HGF)0$$aDhoke, Gaurao V.$$b11
000866224 7001_ $$00000-0003-4026-701X$$aSchwaneberg, Ulrich$$b12
000866224 7001_ $$0P:(DE-HGF)0$$aDavari, Mehdi D.$$b13
000866224 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b14
000866224 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b15
000866224 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b16
000866224 7001_ $$00000-0002-5348-6070$$aGushchin, Ivan$$b17$$eCorresponding author
000866224 773__ $$0PERI:(DE-600)2072584-X$$a10.1039/C9PP00067D$$gVol. 18, no. 7, p. 1793 - 1805$$n7$$p1793 - 1805$$tPhotochemical & photobiological sciences$$v18$$x1474-9092$$y2019
000866224 8564_ $$uhttps://juser.fz-juelich.de/record/866224/files/c9pp00067d.pdf$$yRestricted
000866224 8564_ $$uhttps://juser.fz-juelich.de/record/866224/files/c9pp00067d.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866224 8564_ $$uhttps://juser.fz-juelich.de/record/866224/files/Autorenmanuskript%20A%20thermostable%20flavin-based%20fluorescent%20protein%20from%20Chloroflexus%20aggregans%20--%20a%20framework%20for%20ultra-high%20resolution%20structural%20studies.pdf$$yPublished on 2019-05-01. Available in OpenAccess from 2020-05-01.
000866224 8564_ $$uhttps://juser.fz-juelich.de/record/866224/files/Autorenmanuskript%20A%20thermostable%20flavin-based%20fluorescent%20protein%20from%20Chloroflexus%20aggregans%20--%20a%20framework%20for%20ultra-high%20resolution%20structural%20studies.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-05-01. Available in OpenAccess from 2020-05-01.
000866224 909CO $$ooai:juser.fz-juelich.de:866224$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179072$$aForschungszentrum Jülich$$b9$$kFZJ
000866224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b14$$kFZJ
000866224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b15$$kFZJ
000866224 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b16$$kFZJ
000866224 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000866224 9141_ $$y2019
000866224 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866224 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000866224 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866224 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866224 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHOTOCH PHOTOBIO SCI : 2017
000866224 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866224 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866224 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866224 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866224 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000866224 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866224 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866224 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866224 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866224 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866224 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000866224 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866224 920__ $$lyes
000866224 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000866224 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x1
000866224 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x2
000866224 9801_ $$aFullTexts
000866224 980__ $$ajournal
000866224 980__ $$aVDB
000866224 980__ $$aUNRESTRICTED
000866224 980__ $$aI:(DE-Juel1)IMET-20090612
000866224 980__ $$aI:(DE-Juel1)ICS-6-20110106
000866224 980__ $$aI:(DE-Juel1)IBG-1-20101118
000866224 981__ $$aI:(DE-Juel1)IBI-7-20200312