000866225 001__ 866225
000866225 005__ 20240619092036.0
000866225 0247_ $$2doi$$a10.1021/acs.jpcb.9b06608
000866225 0247_ $$2ISSN$$a1089-5647
000866225 0247_ $$2ISSN$$a1520-5207
000866225 0247_ $$2ISSN$$a1520-6106
000866225 0247_ $$2altmetric$$aaltmetric:65180442
000866225 0247_ $$2pmid$$apmid:31380636
000866225 0247_ $$2WOS$$aWOS:000484074500013
000866225 037__ $$aFZJ-2019-05391
000866225 082__ $$a530
000866225 1001_ $$0P:(DE-Juel1)140278$$aStadler, Andreas Maximilian$$b0
000866225 245__ $$aTernary Complex Formation and Photoactivation of a Photoenzyme Results in Altered Protein Dynamics
000866225 260__ $$aWashington, DC$$bSoc.$$c2019
000866225 3367_ $$2DRIVER$$aarticle
000866225 3367_ $$2DataCite$$aOutput Types/Journal article
000866225 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1586004588_29482
000866225 3367_ $$2BibTeX$$aARTICLE
000866225 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866225 3367_ $$00$$2EndNote$$aJournal Article
000866225 520__ $$aThe interplay between protein dynamics and catalysis remains a fundamental question in enzymology. We here investigate the ns-timescale dynamics of a light-dependent NADPH:protochlorophyllide oxidoreductase (LPOR), a photoenzyme crucial for chlorophyll synthesis. LPORs catalyze the light-triggered trans addition of a hydride and a proton across the C17═C18 double bond of the chlorophyll precursor protochlorophyllide (Pchlide). Because of the lack of an LPOR structure, the global structural and dynamic consequences of LPOR/Pchlide/NADPH ternary complex formation remain elusive. Moreover, photoactivation of LPORs by low-light preillumination is controversially discussed as unequivocal proof for this phenomenon is lacking. By employing quasielastic neutron spectroscopy (QENS), we show that the formation of the ternary holoprotein complex as well as photoactivation lead to progressive rigidification of the protein. These findings are supported by thermostability measurements, which reveal different melting behavior and thermostabilities for the apo- and holoprotein ternary complexes. Molecular dynamics simulations in good agreement with the experimental QENS results suggest that the increased flexibility observed for the apoprotein stems from structural fluctuations of the NADPH and Pchlide substrate binding sites of the enzyme. On the basis of our results, in conjunction with activity and stability measurements, we provide independent proof for LPOR photoactivation, defined as a process that modifies the protein structure and dynamics, resulting in an increased substrate turnover. Our findings advance the structural and dynamic understanding of LPORs and provide a first link between protein dynamics and catalysis for this enzyme class.
000866225 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000866225 588__ $$aDataset connected to CrossRef
000866225 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000866225 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000866225 693__ $$0EXP:(DE-MLZ)SPHERES-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)SPHERES-20140101$$6EXP:(DE-MLZ)NL6S-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eSPHERES: Backscattering spectrometer$$fNL6S$$x0
000866225 7001_ $$0P:(DE-Juel1)161384$$aSchneidewind, Judith$$b1
000866225 7001_ $$0P:(DE-Juel1)131056$$aZamponi, Michaela$$b2
000866225 7001_ $$0P:(DE-Juel1)141796$$aKnieps-Grünhagen, Esther$$b3
000866225 7001_ $$00000-0002-8133-0890$$aGholami, Samira$$b4
000866225 7001_ $$00000-0003-4026-701X$$aSchwaneberg, Ulrich$$b5
000866225 7001_ $$00000-0002-1208-602X$$aRivalta, Ivan$$b6
000866225 7001_ $$00000-0002-0796-289X$$aGaravelli, Marco$$b7
000866225 7001_ $$00000-0003-0089-7156$$aDavari, Mehdi D.$$b8
000866225 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b9
000866225 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b10$$eCorresponding author
000866225 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/acs.jpcb.9b06608$$gVol. 123, no. 34, p. 7372 - 7384$$n34$$p7372 - 7384$$tThe journal of physical chemistry <Washington, DC> / B B, Condensed matter, materials, surfaces, interfaces & biophysical$$v123$$x1520-5207$$y2019
000866225 8564_ $$uhttps://juser.fz-juelich.de/record/866225/files/acs.jpcb.9b06608.pdf$$yRestricted
000866225 8564_ $$uhttps://juser.fz-juelich.de/record/866225/files/acs.jpcb.9b06608.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866225 909CO $$ooai:juser.fz-juelich.de:866225$$pVDB$$pVDB:MLZ
000866225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140278$$aForschungszentrum Jülich$$b0$$kFZJ
000866225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161384$$aForschungszentrum Jülich$$b1$$kFZJ
000866225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131056$$aForschungszentrum Jülich$$b2$$kFZJ
000866225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141796$$aForschungszentrum Jülich$$b3$$kFZJ
000866225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b9$$kFZJ
000866225 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b10$$kFZJ
000866225 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000866225 9141_ $$y2019
000866225 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866225 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866225 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866225 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866225 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866225 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866225 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866225 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866225 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866225 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866225 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ PHYS CHEM B : 2017
000866225 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866225 920__ $$lyes
000866225 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x0
000866225 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x1
000866225 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung$$x2
000866225 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kJCNS-1$$lNeutronenstreuung$$x3
000866225 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x4
000866225 980__ $$ajournal
000866225 980__ $$aVDB
000866225 980__ $$aI:(DE-Juel1)IMET-20090612
000866225 980__ $$aI:(DE-Juel1)IBG-1-20101118
000866225 980__ $$aI:(DE-Juel1)ICS-1-20110106
000866225 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000866225 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000866225 980__ $$aUNRESTRICTED
000866225 981__ $$aI:(DE-Juel1)IBI-8-20200312
000866225 981__ $$aI:(DE-Juel1)JCNS-1-20110106