001     866227
005     20210130003326.0
024 7 _ |a 10.1103/PhysRevB.100.174301
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1050-2947
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1538-4489
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/23439
|2 Handle
024 7 _ |a altmetric:69822442
|2 altmetric
024 7 _ |a WOS:000494449700001
|2 WOS
037 _ _ |a FZJ-2019-05393
082 _ _ |a 530
100 1 _ |a Rothenbach, N.
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a Microscopic nonequilibrium energy transfer dynamics in a photoexcited metal/insulator heterostructure
260 _ _ |a Woodbury, NY
|c 2019
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1582037093_521
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The element specificity of soft x-ray spectroscopy makes it an ideal tool for analyzing the microscopic origin of ultrafast dynamics induced by localized optical excitation in metal-insulator heterostructures. Using [Fe/MgO]n as a model system, we perform ultraviolet pump/soft x-ray probe experiments, which are sensitive to all constituents of these heterostructures, to probe both electronic and lattice excitations. Complementary ultrafast electron diffraction experiments independently analyze the lattice dynamics of the Fe constituent, and together with ab initio calculations yield comprehensive insight into the microscopic processes leading to local relaxation within a single constituent or nonlocal relaxation between two constituents. Besides electronic excitations in Fe, which are monitored at the Fe L3 absorption edge and relax within 1 ps by electron-phonon coupling, soft x-ray analysis identifies a change at the oxygen K absorption edge of the MgO layers which occurs within 0.5 ps. This ultrafast energy transfer across the Fe-MgO interface is mediated by high-frequency, interface vibrational modes, which are excited by hot electrons in Fe and couple to vibrations in MgO in a mode-selective, nonthermal manner. A second, slower timescale is identified at the oxygen K pre-edge and the Fe L3 edge. The slower process represents energy transfer by acoustic phonons and contributes to thermalization of the entire heterostructure. We thus find that the interfacial energy transfer is associated with nonequilibrium behavior in the phonon system. Because our experiments lack signatures of charge transfer across the interface, we conclude that phonon-mediated processes dominate the competition of electronic and lattice excitations in these nonlocal, nonequilibrium dynamics.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Gruner, M. E.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ollefs, K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Schmitz-Antoniak, C.
|0 P:(DE-Juel1)162347
|b 3
700 1 _ |a Salamon, S.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhou, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Li, R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Mo, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Park, S.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Shen, X.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Weathersby, S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Yang, J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Wang, X. J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Pentcheva, R.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Wende, H.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Bovensiepen, U.
|0 P:(DE-HGF)0
|b 15
|e Corresponding author
700 1 _ |a Sokolowski-Tinten, K.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Eschenlohr, A.
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1103/PhysRevB.100.174301
|g Vol. 100, no. 17, p. 174301
|0 PERI:(DE-600)2844160-6
|n 17
|p 174301
|t Physical review / B
|v 100
|y 2019
|x 0163-1829
856 4 _ |u https://juser.fz-juelich.de/record/866227/files/PhysRevB.100.174301.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866227/files/PhysRevB.100.174301.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866227
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)162347
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21