001     866229
005     20210130003326.0
024 7 _ |a 10.1002/pssb.201900456
|2 doi
024 7 _ |a 0031-8957
|2 ISSN
024 7 _ |a 0370-1972
|2 ISSN
024 7 _ |a 1521-3951
|2 ISSN
024 7 _ |a 2128/24496
|2 Handle
024 7 _ |a WOS:000493865900001
|2 WOS
037 _ _ |a FZJ-2019-05395
082 _ _ |a 530
100 1 _ |a Schmitz, Detlef
|0 0000-0003-1451-4312
|b 0
|e Corresponding author
245 _ _ |a Soft X‐Ray Magnetic Circular Dichroism of Vanadium in the Metal–Insulator Two‐Phase Region of Paramagnetic V2O3 Doped with 1.1% Chromium
260 _ _ |a Weinheim
|c 2020
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1583498097_14363
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a V2O3 doped with 1.1% Cr is investigated at its isostructural correlation‐driven metal–insulator transition near room temperature in its paramagnetic state with X‐ray magnetic circular dichroism (XMCD) spectroscopy in external magnetic fields. A relative XMCD amplitude of about 2 permille is observed at the L2,3 absorption edges of vanadium as expected for magnetic moment per mass values of the order of 1 J T−1 kg−1 from magnetometry and the literature. Across the metal–insulator transition, the vanadium XMCD spectral shape significantly changes. According to atomic multiplet simulations, these changes are due to a changing orbital occupation indicating a changing phase composition. According to estimates used in this study, the dipole moment of the spin density distribution 7⟨𝑇𝑧⟩ in the bulk increases such that the effective vanadium spin moment increases by a few percent with temperature in the two‐phase region. Thereby, it partially compensates for the decrease in the relative XMCD amplitude due to a decreasing alignment of the paramagnetic moments. After a few minor temperature cycles, the sample is in a two‐phase state in which the XMCD and X‐ray linear dichroism spectra hardly depend on the temperature, and the specific electrical resistance is intermediate, showing only a weak sign of the metal–insulator transition.
536 _ _ |a 522 - Controlling Spin-Based Phenomena (POF3-522)
|0 G:(DE-HGF)POF3-522
|c POF3-522
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Schmitz-Antoniak, Carolin
|0 P:(DE-Juel1)162347
|b 1
700 1 _ |a Radu, Florin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Ryll, Hanjo
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Luo, Chen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bhandary, Sumanta
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Biermann, Silke
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Siemensmeyer, Konrad
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Wende, Heiko
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ivanov, Sergey
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Eriksson, Olle
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1002/pssb.201900456
|g p. 1900456 -
|0 PERI:(DE-600)1481096-7
|n 3
|p 1900456 -
|t Physica status solidi / B Basic research B
|v 257
|y 2020
|x 1521-3951
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866229/files/Schmitz_et_al-2020-physica_status_solidi_%28b%29.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866229/files/Schmitz_et_al-2020-physica_status_solidi_%28b%29.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866229
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162347
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-522
|2 G:(DE-HGF)POF3-500
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS STATUS SOLIDI B : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21