000866232 001__ 866232
000866232 005__ 20240711101550.0
000866232 0247_ $$2doi$$a10.1016/j.jpowsour.2018.10.021
000866232 0247_ $$2ISSN$$a0378-7753
000866232 0247_ $$2ISSN$$a1873-2755
000866232 0247_ $$2WOS$$aWOS:000452584900019
000866232 037__ $$aFZJ-2019-05398
000866232 082__ $$a620
000866232 1001_ $$0P:(DE-Juel1)168242$$aAndersson, M.$$b0$$eCorresponding author
000866232 245__ $$aModeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells
000866232 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000866232 3367_ $$2DRIVER$$aarticle
000866232 3367_ $$2DataCite$$aOutput Types/Journal article
000866232 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619163537_2071
000866232 3367_ $$2BibTeX$$aARTICLE
000866232 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866232 3367_ $$00$$2EndNote$$aJournal Article
000866232 520__ $$aA computational fluid dynamics model of a channel (one liquid inlet, one liquid inlet and one two-phase outlet), applicable for PEFC gas channel water transport, is developed. A volume of fluid approach is used to study the two-phase flow behavior (interface-resolved) inside the gas channel, including the surface of GDL (gas diffusion layer), which is verified by experimental results from synchrotron based X-ray radiography and tomography imaging. A reasonably good agreement is found between the model and the measurements in terms of droplet dynamics, shape, and size. The channel height strongly influences the droplet transport behavior, with the droplet being attached to the GDL surface, as well as to the wall on the opposite side to the GDL at the same time for the shallowest channel (150 μm). The GDL contact angle influences the droplet size, with an increased GDL contact angle creating smaller droplets.
000866232 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866232 536__ $$0G:(DE-Juel1)jara0070_20131101$$aFlexible Simulation of Fuel Cells with OpenFOAM (jara0070_20131101)$$cjara0070_20131101$$fFlexible Simulation of Fuel Cells with OpenFOAM$$x1
000866232 588__ $$aDataset connected to CrossRef
000866232 7001_ $$0P:(DE-HGF)0$$aMularczyk, A.$$b1
000866232 7001_ $$0P:(DE-HGF)0$$aLamibrac, A.$$b2
000866232 7001_ $$0P:(DE-Juel1)157835$$aBeale, Steven$$b3
000866232 7001_ $$0P:(DE-HGF)0$$aEller, J.$$b4
000866232 7001_ $$0P:(DE-Juel1)129883$$aLehnert, W.$$b5
000866232 7001_ $$0P:(DE-HGF)0$$aBüchi, F. N.$$b6
000866232 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2018.10.021$$gVol. 404, p. 159 - 171$$p159 - 171$$tJournal of power sources$$v404$$x0378-7753$$y2018
000866232 8564_ $$uhttps://juser.fz-juelich.de/record/866232/files/1-s2.0-S0378775318311133-main.pdf$$yRestricted
000866232 8564_ $$uhttps://juser.fz-juelich.de/record/866232/files/1-s2.0-S0378775318311133-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866232 909CO $$ooai:juser.fz-juelich.de:866232$$pVDB
000866232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168242$$aForschungszentrum Jülich$$b0$$kFZJ
000866232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157835$$aForschungszentrum Jülich$$b3$$kFZJ
000866232 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b5$$kFZJ
000866232 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b5$$kRWTH
000866232 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866232 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000866232 9141_ $$y2019
000866232 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2017
000866232 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866232 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866232 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866232 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866232 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866232 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866232 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866232 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866232 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866232 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866232 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866232 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2017
000866232 920__ $$lyes
000866232 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000866232 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000866232 980__ $$ajournal
000866232 980__ $$aVDB
000866232 980__ $$aI:(DE-Juel1)IEK-3-20101013
000866232 980__ $$aI:(DE-82)080012_20140620
000866232 980__ $$aUNRESTRICTED
000866232 981__ $$aI:(DE-Juel1)ICE-2-20101013