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Abstract Stop-and-go waves are commonly observed in traffic and pedestrian flows.

In traffic theory they are described by phase transitions of metastable models. The

self-organization phenomenon occurs due to inertia mechanisms but requires fine

tuning of the parameters. Here, a novel explanation for stop-and-go waves based

on stochastic effects is presented for pedestrian dynamics. We show that the in-

troduction of specific coloured noises in a stable microscopic model allows to de-

scribe realistic pedestrian stop-and-go behaviour without requirement of metastabil-

ity and phase transition. We compare simulation results of the stochastic model to

real pedestrian trajectories and discuss plausible values for the model’s parameters.

1 Introduction

Stop-and-go waves in traffic flow is a fascinating collective phenomenon that at-

tracted the attention of scientists for several decades [15, 19, 25] (see [7, 18] for

reviews). Curiously, congested flows self-organise in waves of slow and fast traffic

(stop-and-go) instead of streaming homogeneously. Stop-and-go dynamics are ob-

served in road traffic, bicycle and pedestrian movements [39] in reality as well as

during experiments, where the disturbance due to the infrastructure cannot explain

their presence [28]. Besides its scientific interest, such self-organisation phenomena

impact transportation networks in terms of safety, economy, and comfort.

Stop-and-go behaviours are often analysed with microscopic, mesoscopic (ki-

netic) and macroscopic models based on non-linear differential systems (see for in-
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stance [2, 14, 8]), but also with discrete models like cellular automata. The models

based on systems of differential equations have homogeneous equilibrium solutions

that can be unstable for certain values of the parameters. Periodic or quasi-periodic

solutions in unstable cases describe non-homogeneous dynamics, with potentially

stop-and-go waves for fine tuning of the parameters, while the stable cases describe

homogeneous dynamics.

Phase transition and metastability in self-driven dynamical systems far from the

equilibrium are commonly observed in physics, theoretical biology or social sci-

ence [3, 35, 5, 4, 16]. In traffic, typical continuous models are inertial second order

systems based on relaxation processes. Stop-and-go and matching to Korteweg–de

Vries (KdV) and modified KdV soliton equations occur when the inertia of the ve-

hicles exceed critical values [2, 24, 30]. Empirical evidence for phase transitions

in traffic, like hysteresis or capacity drop, have been observed in real data as well

as during experiments [19, 28]. Yet the number of phases and their characteristics

remain actively debated [34].

Some studies describe pedestrian stop-and-go dynamics by means of, as traffic

models, instability and phase transitions [26, 23, 20, 21]. However, to our knowl-

edge, empirical evidence for phase transitions and metastability have not been ob-

served for pedestrian flow. Pedestrian dynamics shows no pronounced inertia effect

since human capacity nearly allows any speed variation at any time. Furthermore,

pedestrian motion does not show mechanical delays. Nevertheless, stop-and-go be-

haviour is observed at congested density levels [27, 39].

In this work, we propose an novel explanation of stop-and-go phenomena in

pedestrian flows as a consequence of stochastic effects. We first present statistical

evidence for the existence of Brownian noise in pedestrian speed time-series. Then

a microscopic model composed of a minimal deterministic part for the convection

and a relaxation process for the noise is proposed and analysed. Simulation results

show that the stochastic approach allows to describe realistic pedestrian stop-and-go

dynamics without metastability and fine tuning of the parameters.

2 Definition of the stochastic model

Stochastic effects can have various roles in the dynamics of self-driven systems

[11]. Generally speaking, the introduction of white noise in models tends to increase

the disorder in the system [35] or to prevent self-organisation [12], while coloured

noises can affect the dynamics and generated complex patterns [1, 6]. Coloured

noise have been observed in human response [9, 38]. Pedestrian as well as driver

behaviours result from complex human cognition. They are intrinsically stochastic

in the sense that the deterministic modelling of the driving, i.e. the modelling of the

human cognition composed of up to 1011 neurons [37], is not possible. Furthermore

the behaviour of a pedestrian, as well as a driver, may be influenced by multiple fac-

tors, e.g. experience, culture, environment, psychology, etc. Stochastic effects and

notion of noise are the main emphasis of many pedestrian or road traffic modelling
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