000866250 001__ 866250
000866250 005__ 20240708133059.0
000866250 0247_ $$2doi$$a10.1016/j.ijhydene.2019.07.075
000866250 0247_ $$2ISSN$$a0360-3199
000866250 0247_ $$2ISSN$$a1879-3487
000866250 0247_ $$2WOS$$aWOS:000486096400003
000866250 037__ $$aFZJ-2019-05416
000866250 082__ $$a620
000866250 1001_ $$0P:(DE-Juel1)165158$$aBorgardt, Elena$$b0$$eCorresponding author
000866250 245__ $$aImpact of clamping pressure and stress relaxation on the performance of different polymer electrolyte membrane water electrolysis cell designs
000866250 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2019
000866250 3367_ $$2DRIVER$$aarticle
000866250 3367_ $$2DataCite$$aOutput Types/Journal article
000866250 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573222520_10741
000866250 3367_ $$2BibTeX$$aARTICLE
000866250 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866250 3367_ $$00$$2EndNote$$aJournal Article
000866250 520__ $$aOne promising option for storing surplus electricity from renewable energy sources is the conversion of electricity to hydrogen by polymer electrolyte membrane (PEM) electrolysis and the subsequent storage of the hydrogen produced. In order to obtain good contact, the components of an electrolysis cell are compressed at a certain clamping pressure. However, too high of a pressure can have a negative effect on cell performance. This work discusses how clamping pressure affects the cell performance of different PEM electrolysis cell designs. A special test cell is designed that makes it possible to apply pressure directly onto the active area of the cell. Polarization curves are measured at different clamping pressures, while electrochemical impedance spectroscopy (EIS) is used to show the effect of pressure on performance losses. Above a critical clamping pressure of 2.5 MPa ohmic losses are found to rise. In addition, it is tested as to whether the clamping pressure remains constant over time. The results show that stress relaxation of the catalyst coated membrane (CCM) leads to a pressure loss and thus to a decline in performance. Therefore, not only is it shown that pressure is crucial for cell performance but also, for the first time, a mechanical effect is described as an element of the cell's degradation.
000866250 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866250 588__ $$aDataset connected to CrossRef
000866250 7001_ $$0P:(DE-Juel1)173862$$aGiesenberg, Lennard$$b1
000866250 7001_ $$0P:(DE-Juel1)174324$$aReska, Marc$$b2
000866250 7001_ $$0P:(DE-Juel1)129892$$aMüller, Martin$$b3
000866250 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b4
000866250 7001_ $$0P:(DE-Juel1)156551$$aLangemann, Manuel$$b5
000866250 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b6
000866250 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b7
000866250 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2019.07.075$$gVol. 44, no. 42, p. 23556 - 23567$$n42$$p23556 - 23567$$tInternational journal of hydrogen energy$$v44$$x0360-3199$$y2019
000866250 909CO $$ooai:juser.fz-juelich.de:866250$$pVDB
000866250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165158$$aForschungszentrum Jülich$$b0$$kFZJ
000866250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129892$$aForschungszentrum Jülich$$b3$$kFZJ
000866250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b4$$kFZJ
000866250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b6$$kFZJ
000866250 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b6$$kRWTH
000866250 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b7$$kFZJ
000866250 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b7$$kRWTH
000866250 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866250 9141_ $$y2019
000866250 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2017
000866250 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866250 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866250 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866250 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866250 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866250 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866250 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866250 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866250 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866250 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866250 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866250 920__ $$lyes
000866250 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000866250 980__ $$ajournal
000866250 980__ $$aVDB
000866250 980__ $$aI:(DE-Juel1)IEK-3-20101013
000866250 980__ $$aUNRESTRICTED
000866250 981__ $$aI:(DE-Juel1)ICE-2-20101013