001     866251
005     20210628150959.0
024 7 _ |a 10.1007/978-3-030-11440-4_36
|2 doi
024 7 _ |a 2128/23263
|2 Handle
024 7 _ |a WOS:000653682700036
|2 WOS
037 _ _ |a FZJ-2019-05417
100 1 _ |a Tordeux, Antoine
|0 P:(DE-Juel1)159135
|b 0
111 2 _ |a Traffic and Granular Flow 2017
|g TGF'17
|c Washington
|d 2017-07-19 - 2017-07-22
|w USA
245 _ _ |a Prediction of Pedestrian Speed with Artificial Neural Networks
260 _ _ |a Cham
|c 2019
|b Springer International Publishing
295 1 0 |a Traffic and Granular Flow '17 / Hamdar, Samer H. (Editor) ; Cham : Springer International Publishing, 2019, Chapter 36 ; ISBN: 978-3-030-11439-8
300 _ _ |a 327-335
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1573224555_10741
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
520 _ _ |a Pedestrian behaviours tend to depend on the type of facility. Accurate predictions of pedestrian movement in complex geometries (including corridor, bottleneck or intersection) are difficult to achieve for models with few parameters. Artificial neural networks have multiple parameters and are able to identify various types of patterns. They could be a suitable alternative for forecasts. We aim in this paper to present first steps testing this approach. We compare estimations of pedestrian speed with a classical model and a neural network for combinations of corridor and bottleneck experiments. The results show that the neural network is able to differentiate the two geometries and to improve the estimation of pedestrian speeds.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book
700 1 _ |a Chraibi, Mohcine
|0 P:(DE-Juel1)132077
|b 1
|e Corresponding author
700 1 _ |a Seyfried, Armin
|0 P:(DE-Juel1)132266
|b 2
700 1 _ |a Schadschneider, Andreas
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1007/978-3-030-11440-4_36
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866251/files/ArticleTGF17_NN.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866251/files/ArticleTGF17_NN.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866251
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159135
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132077
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132266
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-7-20180321
|k IAS-7
|l Zivile Sicherheitsforschung
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)IAS-7-20180321
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21