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Abstract Pedestrian behaviours tend to depend on the type of facility. Therefore

accurate predictions of pedestrians movements in complex geometries (including

corridor, bottleneck or intersection) are difficult to achieve for classical models with

few parameters. Artificial neural networks have multiple parameters and are able

to identify various types of patterns. They could be a suitable alternative for fore-

casts. We aim in this paper to present first steps testing this approach. We compare

estimations of pedestrian speed with a classical model and a neural network for com-

binations of corridor and bottleneck experiments. The results show that the neural

network is able to differentiate the two geometries and to improve the estimation of

pedestrian speeds when the geometries are mixed.

1 Introduction

Microscopic pedestrian models are frequently used in traffic engineering to predict

crowd dynamics. Classical operational approaches are in general decision-based,

velocity-based or force-based models (see [24] and references therein). Such models

consider physical as well as social or psychological factors. They are basic rules or

generic functions depending locally on the environment. Few parameters having

generally physical interpretations allow to adjust the model.
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Before applying simulations to make predictions, the model parameters have to

be calibrated and the models have to be validated, experimentally or statistically by

using real data. The validation can be carried out by checking whether the models

are able to describe the dynamics accurately for configurations different from the

ones used for the calibration (cross-validation) [28]. A good model should provide

realistic dynamics in different conditions (i.e. different geometries, initial or bound-

ary conditions) for the same setting of the parameters.

The parameter for the convection part of the models (for instance desired speed

or time gap) can be referred to the fundamental diagram (FD), a phenomenolog-

ical relation between speed and surrounding distance spacing to the neighbours

and obstacles [26]. This relation can be explicitly used to model the speed of the

pedestrian and is then related to optimal velocity, a concept borrowed from traffic

modelling [2], see e.g. [19, 18, 15]. It is also used as an implicit relation (see e.g.

[12, 4, 10]) that is determined by considering uni-dimensional flows [3]. By neglect-

ing anisotropic effects in the models (such as the vision based effect), microscopic

models can be characterised at an aggregated level by fundamental diagrams deter-

mining a speed to a local density given by the mean distance spacing to the closest

neighbours [6]. In the following we refer a model simply based on a fundamental

diagram as FD-based model.

Despite of their simplicity, microscopic models can describe realistic pedestrian

flows, as well as self-organization phenomena such as lane formation or alternation

of flow at a bottleneck in bi-directional streams [11, 24]. However, the prediction of

pedestrian movement in complex spatial structures (e.g. buildings like stadia or sta-

tions) remains problematic. Observations show that pedestrians tend to adapt their

behaviour according to the facilities [5]. For instance, the flow tends to locally in-

crease at bottlenecks [25, 30, 20]. This leads to geometry-dependent characteristics

and makes aggregated models based on a single fundamental diagram unable to ac-

curately describe transitions between different types of facilities (such as corridor,

T-junction, crossing or bottleneck), as well as from platforms to stairs.

An alternative data-driven approach for the prediction of pedestrian dynamics in

complex geometries could be provided by using artificial neural networks (ANN).

Neural networks have already proven their efficiency for motion planning in robotic

or autonomous vehicles [23, 13], and start to be used for pedestrian dynamics as well

[6, 8, 16, 1]. Such approach is data-based and, by opposition to classical models,

has artificially a very large number of parameters with no explicit physical meaning

(see Fig. 1). ANN can reproduce complex patterns that FD-based models, describing

dynamics at an aggregated level, cannot.

The aim of this work is to evaluate whether ANN could accurately describe

pedestrian behaviour for different types of geometries. A feed-forward neural net-

work is compared to a FD-based model with data gained by experiments at bottle-

neck and corridor with closed boundary conditions (in the following ‘bottleneck’

and ‘ring’ experiments) [27, 7]. The performances (i.e. the fundamental diagram)

significantly differ according to the spatial structure. Training and testing (cross-

validation) are carried out for different combinations of bottleneck and ring ex-

periments. The results show that the neural network is able to identify the spatial











Prediction of Pedestrian Speed with Artificial Neural Networks 7

Table 2 Fitting of the time gap T , the pedestrian size ℓ and the desired speed v0 parameters for the

data predicted by the neural network.

Experiment R B

ℓ (m) 0.63 0.66

T (s) 0.68 0.50

V0 (m/s) 1.44 1.51

6 Conclusion

The data-driven approach using an artificial neural network is able to distinguish

pedestrian performances in ring and bottleneck experiments from the relative po-

sitions of the K = 10 closest neighbours and the mean spacing. Consequently, we

observe that the speed prediction for mixed data can be improved by a factor up to

20% by using a network compared to an aggregated model based on fundamental

diagrams.

The results are first steps suggesting that neural networks could be suitable tools

for the prediction of pedestrian dynamics in complex geometries. Yet, the simulation

of the networks remain to be carried out over full trajectories and compared to the

performances obtained with existing models and notably anisotropic models. Fur-

thermore, other inputs, hidden layers and training on different geometries have to be

investigated. Especially, one remains to test the complexity necessary to the network

for accurate precisions regarding to the size and heterogeneity of the datasets.
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