000866252 001__ 866252
000866252 005__ 20210628150953.0
000866252 0247_ $$2doi$$a10.1007/978-3-030-11440-4_35
000866252 0247_ $$2Handle$$a2128/23584
000866252 0247_ $$2WOS$$aWOS:000653682700035
000866252 037__ $$aFZJ-2019-05418
000866252 1001_ $$aKurtc, Valentina$$b0
000866252 1112_ $$aTraffic and Granular Flow$$cWashington$$d2017-07-19 - 2017-07-22$$gTGF17$$wUSA
000866252 245__ $$aAutomated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics
000866252 260__ $$aCham$$bSpringer International Publishing$$c2019
000866252 29510 $$aTraffic and Granular Flow '17 / Hamdar, Samer H. (Editor)  
000866252 300__ $$a317-325
000866252 3367_ $$2ORCID$$aCONFERENCE_PAPER
000866252 3367_ $$033$$2EndNote$$aConference Paper
000866252 3367_ $$2BibTeX$$aINPROCEEDINGS
000866252 3367_ $$2DRIVER$$aconferenceObject
000866252 3367_ $$2DataCite$$aOutput Types/Conference Paper
000866252 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1575638633_31057
000866252 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000866252 520__ $$aIn this work we propose a methodology for assessment of pedestrian modelscontinuous in space.With respect to the Kolmogorov-Smirnov distance between twodata clouds, representing for instance simulated and the corresponding empiricaldata, we calculate an evaluation factor between zero and one. Based on the value ofthe herein developed factor, we make a statement about the goodness of the modelunder evaluation. Moreover this process can be repeated in an automatic way inorder to maximize the above mentioned factor and hence determine the optimal setof model parameters.
000866252 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000866252 588__ $$aDataset connected to CrossRef Book
000866252 7001_ $$0P:(DE-Juel1)132077$$aChraibi, Mohcine$$b1$$eCorresponding author$$ufzj
000866252 7001_ $$0P:(DE-HGF)0$$aTordeux, Antoine$$b2
000866252 773__ $$a10.1007/978-3-030-11440-4_35
000866252 8564_ $$uhttps://juser.fz-juelich.de/record/866252/files/author.pdf$$yOpenAccess
000866252 8564_ $$uhttps://juser.fz-juelich.de/record/866252/files/author.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866252 909CO $$ooai:juser.fz-juelich.de:866252$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866252 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132077$$aForschungszentrum Jülich$$b1$$kFZJ
000866252 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000866252 9141_ $$y2019
000866252 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866252 920__ $$lyes
000866252 9201_ $$0I:(DE-Juel1)IAS-7-20180321$$kIAS-7$$lZivile Sicherheitsforschung$$x0
000866252 980__ $$acontrib
000866252 980__ $$aVDB
000866252 980__ $$aUNRESTRICTED
000866252 980__ $$acontb
000866252 980__ $$aI:(DE-Juel1)IAS-7-20180321
000866252 9801_ $$aFullTexts