000866259 001__ 866259
000866259 005__ 20210130003339.0
000866259 0247_ $$2doi$$a10.1038/s41438-019-0161-3
000866259 0247_ $$2Handle$$a2128/23424
000866259 0247_ $$2altmetric$$aaltmetric:62581425
000866259 0247_ $$2pmid$$apmid:31263563
000866259 0247_ $$2WOS$$aWOS:000472657000001
000866259 037__ $$aFZJ-2019-05425
000866259 041__ $$aEnglish
000866259 082__ $$a640
000866259 1001_ $$0P:(DE-HGF)0$$aGrimm, Eckhard$$b0$$eCorresponding author
000866259 245__ $$aLocalized bursting of mesocarp cells triggers catastrophic fruit cracking
000866259 260__ $$aLondon$$bNature Publ. Group$$c2019
000866259 3367_ $$2DRIVER$$aarticle
000866259 3367_ $$2DataCite$$aOutput Types/Journal article
000866259 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1574341183_25085
000866259 3367_ $$2BibTeX$$aARTICLE
000866259 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866259 3367_ $$00$$2EndNote$$aJournal Article
000866259 520__ $$aThe so-called rain-cracking of sweet cherry fruit severely threatens commercial production. Simple observation tells us that cuticular microcracking (invisible) always precedes skin macrocracking (visible). The objective here was to investigate how a macrocrack develops. Incubating detached sweet cherry fruit in deionized water induces microcracking. Incubating fruit in D2O and concurrent magnetic resonance imaging demonstrates that water penetration occurs only (principally) through the microcracks, with nondetectable amounts penetrating the intact cuticle. Optical coherence tomography of detached, whole fruit incubated in deionized water, allowed generation of virtual cross-sections through the zone of a developing macrocrack. Outer mesocarp cell volume increased before macrocracks developed but increased at a markedly higher rate thereafter. Little change in mesocarp cell volume occurred in a control zone distant from the crack. As water incubation continued, the cell volume in the crack zone decreased, indicating leaking/bursting of individual mesocarp cells. As incubation continued still longer, the crack propagated between cells both to form a long, deep macrocrack. Outer mesocarp cell turgor did not differ significantly before and after incubation between fruit with or without macrocracks; nor between cells within the crack zone and those in a control zone distant from the macrocrack. The cumulative frequency distribution of the log-transformed turgor pressure of a population of outer mesocarp cells reveals all cell turgor data followed a normal distribution. The results demonstrate that microcracks develop into macrocracks following the volume increase of a few outer mesocarp cells and is soon accompanied by cell bursting.
000866259 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0
000866259 588__ $$aDataset connected to CrossRef
000866259 7001_ $$0P:(DE-HGF)0$$aHahn, Jan$$b1
000866259 7001_ $$0P:(DE-Juel1)131784$$aPflugfelder, Daniel$$b2$$ufzj
000866259 7001_ $$0P:(DE-HGF)0$$aSchmidt, Moritz Jonathan$$b3
000866259 7001_ $$0P:(DE-Juel1)129425$$avan Dusschoten, Dagmar$$b4$$ufzj
000866259 7001_ $$0P:(DE-HGF)0$$aKnoche, Moritz$$b5
000866259 773__ $$0PERI:(DE-600)2781828-7$$a10.1038/s41438-019-0161-3$$gVol. 6, no. 1, p. 79$$n1$$p79$$tHorticulture research$$v6$$x2052-7276$$y2019
000866259 8564_ $$uhttps://juser.fz-juelich.de/record/866259/files/s41438-019-0161-3.pdf$$yOpenAccess
000866259 8564_ $$uhttps://juser.fz-juelich.de/record/866259/files/s41438-019-0161-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866259 909CO $$ooai:juser.fz-juelich.de:866259$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131784$$aForschungszentrum Jülich$$b2$$kFZJ
000866259 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129425$$aForschungszentrum Jülich$$b4$$kFZJ
000866259 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000866259 9141_ $$y2019
000866259 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866259 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866259 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHORTIC RES-ENGLAND : 2017
000866259 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866259 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866259 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866259 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866259 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866259 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866259 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000866259 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000866259 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866259 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866259 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central
000866259 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866259 920__ $$lyes
000866259 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000866259 980__ $$ajournal
000866259 980__ $$aVDB
000866259 980__ $$aUNRESTRICTED
000866259 980__ $$aI:(DE-Juel1)IBG-2-20101118
000866259 9801_ $$aFullTexts