001     866272
005     20210130003341.0
024 7 _ |a 10.3390/ijerph16203959
|2 doi
024 7 _ |a 1660-4601
|2 ISSN
024 7 _ |a 1661-7827
|2 ISSN
024 7 _ |a 2128/23300
|2 Handle
024 7 _ |a altmetric:69279471
|2 altmetric
024 7 _ |a pmid:31627393
|2 pmid
024 7 _ |a WOS:000494779100173
|2 WOS
037 _ _ |a FZJ-2019-05431
082 _ _ |a 610
100 1 _ |a Junk, Jürgen
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Future Heat Waves in Different European Capitals Based on Climate Change Indicators
260 _ _ |a Basel
|c 2019
|b MDPI AG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1573547800_30020
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Changes in the frequency and intensity of heat waves have shown substantial negative impacts on public health. At the same time, climate change towards increasing air temperatures throughout Europe will foster such extreme events, leading to the population being more exposed to them and societies becoming more vulnerable. Based on two climate change scenarios (Representative Concentration Pathway 4.5 and 8.5) we analysed the frequency and intensity of heat waves for three capital cities in Europe representing a North–South transect (London, Luxembourg, Rome). We used indices proposed by the Expert Team on Sector-Specific Climate Indices of the World Meteorological Organization to analyze the number of heat waves, the number of days that contribute to heat waves, the length of the longest heat waves, as well as the mean temperature during heat waves. The threshold for the definition of heat waves is calculated based on a reference period of 30 years for each of the three cities, allowing for a direct comparison of the projected changes between the cities. Changes in the projected air temperature between a reference period (1971–2000) and three future periods (2001–2030 near future, 2031–2060 middle future, and 2061–2090 far future) are statistically significant for all three cities and both emission scenarios. Considerable similarities could be identified for the different heat wave indices. This directly affects the risk of the exposed population and might also negatively influence food security and water supply.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Goergen, Klaus
|0 P:(DE-Juel1)156253
|b 1
700 1 _ |a Krein, Andreas
|0 P:(DE-HGF)0
|b 2
773 _ _ |a 10.3390/ijerph16203959
|g Vol. 16, no. 20, p. 3959 -
|0 PERI:(DE-600)2175195-X
|n 20
|p 3959
|t International journal of environmental research and public health
|v 16
|y 2019
|x 1660-4601
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/866272/files/Junk2019a.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/866272/files/Junk2019a.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:866272
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156253
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J ENV RES PUB HE : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21