001     866292
005     20220930130222.0
024 7 _ |a 10.1016/j.cpc.2019.107006
|2 doi
024 7 _ |a 0010-4655
|2 ISSN
024 7 _ |a 1386-9485
|2 ISSN
024 7 _ |a 1879-2944
|2 ISSN
024 7 _ |a 2128/23791
|2 Handle
024 7 _ |a WOS:000509613900006
|2 WOS
024 7 _ |a altmetric:62281769
|2 altmetric
037 _ _ |a FZJ-2019-05451
082 _ _ |a 530
100 1 _ |a Willsch, D.
|0 P:(DE-Juel1)167542
|b 0
|e Corresponding author
245 _ _ |a Support vector machines on the D-Wave quantum annealer
260 _ _ |a Amsterdam
|c 2020
|b North Holland Publ. Co.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610983008_11031
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Kernel-based support vector machines (SVMs) are supervised machine learning algorithms for classification and regression problems. We introduce a method to train SVMs on a D-Wave 2000Q quantum annealer and study its performance in comparison to SVMs trained on conventional computers. The method is applied to both synthetic data and real data obtained from biology experiments. We find that the quantum annealer produces an ensemble of different solutions that often generalizes better to unseen data than the single global minimum of an SVM trained on a conventional computer, especially in cases where only limited training data is available. For cases with more training data than currently fits on the quantum annealer, we show that a combination of classifiers for subsets of the data almost always produces stronger joint classifiers than the conventional SVM for the same parameters.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a PhD no Grant - Doktorand ohne besondere Förderung (PHD-NO-GRANT-20170405)
|0 G:(DE-Juel1)PHD-NO-GRANT-20170405
|c PHD-NO-GRANT-20170405
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Willsch, M.
|0 P:(DE-Juel1)167543
|b 1
700 1 _ |a De Raedt, Hans
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Michielsen, K.
|0 P:(DE-Juel1)138295
|b 3
773 _ _ |a 10.1016/j.cpc.2019.107006
|g p. 107006 -
|0 PERI:(DE-600)1466511-6
|p 107006 -
|t Computer physics communications
|v 248
|y 2020
|x 0010-4655
856 4 _ |u https://juser.fz-juelich.de/record/866292/files/Rechnung-Elsevier-Willsch-CommCompPhys-2019-11-11.pdf
856 4 _ |u https://juser.fz-juelich.de/record/866292/files/1-s2.0-S001046551930342X-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/866292/files/Rechnung-Elsevier-Willsch-CommCompPhys-2019-11-11.pdf?subformat=pdfa
|x pdfa
856 4 _ |u https://juser.fz-juelich.de/record/866292/files/1-s2.0-S001046551930342X-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:866292
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)167543
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
914 1 _ |y 2019
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b COMPUT PHYS COMMUN : 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21