
Computer Physics Communications 248 (2020) 107006

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Support vectormachines on the D-Wave quantum annealer✩

D. Willsch a,b,∗, M. Willsch a,b, H. De Raedt c, K. Michielsen a,b

a Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany
b RWTH Aachen University, D-52056 Aachen, Germany
c Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands

a r t i c l e i n f o

Article history:
Received 17 June 2019
Received in revised form30 September 2019
Accepted 27 October 2019
Available online 4 November 2019

Keywords:
Support vector machine
Kernel-based SVM
Machine learning
Classification
Quantum computation
Quantum annealing

a b s t r a c t

Kernel-based support vector machines (SVMs) are supervised machine learning algorithms for classifi-
cation and regression problems. We introduce a method to train SVMs on a D-Wave 2000Q quantum
annealer and study its performance in comparison to SVMs trained on conventional computers. The
method is applied to both synthetic data and real data obtained from biology experiments. We find
that the quantum annealer produces an ensemble of different solutions that often generalizes better to
unseen data than the single global minimum of an SVM trained on a conventional computer, especially
in cases where only limited training data is available. For cases with more training data than currently
fits on the quantum annealer, we show that a combination of classifiers for subsets of the data almost
always produces stronger joint classifiers than the conventional SVM for the same parameters.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The growing interest in both quantum computing and ma-
chine learning has inspired researchers to study a combination
of both fields, termed quantum machine learning [1–7]. Recently,
it has been shown that using the D-Wave quantum annealer can
yield advantages in classification performance over state-of-the-
art conventional approaches for certain computational biology
problems using a linear classifier [8]. In this paper, we improve
on these results by replacing the linear classifier with a supe-
rior nonlinear classification approach, the kernel-based support
vector machine (SVM) [9,10]. We introduce its formulation for a
D-Wave quantum annealer and present training results for both
synthetic data and real data. To distinguish between the SVM
formulations, we use the word classical to denote the original
version of an SVM as defined in [9].

The field of supervised machine learning deals with the prob-
lem of learning model parameters from a set of labeled training
data in order to make predictions about test data. SVMs in par-
ticular are known for their stability (in comparison to decision
trees or deep neural networks [11–14]), in the sense that small
differences in the training data do not generally produce huge
differences in the resulting classifiers. Moreover, kernel-based
SVMs profit from the kernel trick, effectively maneuvering around

✩ The review of this paper was arranged by Prof. D.P. Landau.
∗ Corresponding author at: Institute for Advanced Simulation, Jülich

Supercomputing Centre, Forschungszentrum Jülich, D-52425 Jülich, Germany.
E-mail address: d.willsch@fz-juelich.de (D. Willsch).

the ‘‘curse of dimensionality’’ [9,15]. In contrast to Deep Learning,
which often requires large amounts of training data, SVMs are
typically used when only small sets of training data are available.
But also in combination with Deep Learning, where SVMs are ap-
plied on top of neural networks to classify the detected features,
SVMs have been found to yield significant gains in classification
performance [16–19].

Quantum annealers manufactured by D-Wave Systems Inc. are
available with about 2000 qubits [20–23]. They automatically
produce a variety of close-to-optimal solutions to a given opti-
mization problem [8,23,24]. This is particularly interesting in the
context of machine learning, because any of the solutions pro-
duced for a given training dataset have the potential to perform
well on new test data. For SVMs, for which the original solution
is the global optimum of the underlying convex optimization
problem for the training data [10], it is an interesting question
whether the ensemble of different solutions from the quantum
annealer can improve the classification performance for the test
data.

We conduct our SVM experiments on a D-Wave 2000Q
(DW2000Q) quantum annealer [23]. Quantum annealing (QA) is
so far the only paradigm of quantum computing for which pro-
cessors of a reasonable size are available. The other paradigm of
quantum computing, i.e., the gate-based (or universal) quantum
computer [25], is still limited to less than 100 quantum bits
(qubits) [26]. It is worth mentioning that for gate-based quantum
computers, a quantum algorithm for SVMs has already been
proposed [27]. However, only a few very simple tasks, for which
almost all classification was already done in the preprocessing
step, have been studied experimentally [28].

https://doi.org/10.1016/j.cpc.2019.107006
0010-4655/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.cpc.2019.107006
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.107006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:d.willsch@fz-juelich.de
https://doi.org/10.1016/j.cpc.2019.107006
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006

QA requires the formulation of the computational problem as
a quadratic unconstrained binary optimization (QUBO). A QUBO
problem is defined as the minimization of the energy function

E =

∑
i≤j

aiQijaj, (1)

where ai ∈ {0, 1} are the binary variables of the optimiza-
tion problem, and Q is an upper-triangular matrix of real num-
bers called the QUBO weight matrix. Note that the size of the
DW2000Q quantum processor and the Chimera topology [22]
impose certain restrictions on this matrix. A popular alternative
formulation of the problem in terms of variables si ∈ {−1, 1} is
known as the Ising model [29,30].

We present a formulation of SVMs as a QUBO defined by
Eq. (1) and discuss certain mathematical properties in the training
of SVMs that make it particularly appealing for use on a quantum
annealer. In comparison to the classical SVM, we find that a
combination of the solutions returned by the quantum annealer
often surpasses the single solution of the classical SVM.

This paper is structured as follows: In Section 2, we intro-
duce the classical SVM, our formulation of an SVM for QA, and
the metrics we use to compare the performance of both.
Section 3 contains the application of both SVM versions to syn-
thetic two-dimensional data and real data from biology experi-
ments, including the calibration, training, and testing phase. We
conclude our study with a short discussion in Section 4.

2. SVMs on a quantum annealer

In this section, we first briefly review the classical SVM, and
then introduce the QA version of an SVM. Finally, we discuss ways
to evaluate the classification performance in the applications
presented in the next section.

2.1. The classical SVM

An SVM is a supervised machine-learning algorithm for clas-
sification and regression. It operates on a dataset

D = {(xn, tn) : n = 0, . . . ,N − 1}, (2)

where xn ∈ Rd is a point in d-dimensional space (a feature vector),
and tn is the target label assigned to xn. We consider the task of
learning a binary classifier that assigns a class label tn = ±1 for
a given data point xn. In the following, we call the class tn = 1
‘‘positive’’ and the class tn = −1 ‘‘negative’’.

Training an SVM amounts to solving the quadratic program-
ming (QP) problem [15]

minimize E =
1
2

∑
nm

αnαmtntmk(xn, xm) −

∑
n

αn, (3)

subject to 0 ≤ αn ≤ C, (4)

and
∑
n

αntn = 0, (5)

for N coefficients αn ∈ R, where C is a regularization parameter
and k(·, ·) is the kernel function of the SVM [9]. The resulting co-
efficients αn define a (d− 1)-dimensional decision boundary that
separates Rd in two regions corresponding to the predicted class
label. A typical solution often contains many αn = 0. The decision
boundary is then determined by the points corresponding to αn ̸=

0 (the support vectors of the SVM). A prediction for an arbitrary
point x ∈ Rd can be made by evaluating the decision function

f (x) =

∑
n

αntnk(xn, x) + b, (6)

where a reasonable choice to determine the bias b is given by
[15]

b =

∑
n αn(C − αn)

[
tn −

∑
m αmtmk(xm, xn)

]∑
n αn(C − αn)

. (7)

Geometrically, the decision function f (x) represents a signed
distance between the point x and the decision boundary. Thus the
class label for x predicted by the trained SVM is t̃ = sign(f (x)).

The formulation of the problem given in Eqs. (3)–(5) is the
so-called dual formulation of an SVM (see [10] for more in-
formation). Since it represents a convex quadratic optimization
problem, it is one of the rare minimization problems in machine
learning that have a global minimum. Note, however, that the
global minimum with respect to the training dataset D may not
necessarily be optimal for generalizing to the test dataset.

Kernel-based SVMs are particularly powerful since they al-
low for nonlinear decision boundaries defined by f (x) = 0
(see Eq. (6)), implicitly mapping the feature vectors to higher-
dimensional spaces [31]. Interestingly, the complexity of the
problem does not grow with this dimension, since only the values
of the kernel function k(xn, xm) enter the problem specification
(see Eq. (3)). This fact is known as the kernel trick [9,15].

The choice of the kernel function can have a significant impact
on the results. Typical choices for SVMs are linear, polynomial,
sigmoid, and radial basis function (rbf) kernels [10]. In general,
an rbf kernel is a kernel for which k(xn, xm) can be written as a
function of the distance ∥xn − xm∥ only [9]. The most common
rbf kernel is the Gaussian kernel (often referred to as the rbf
kernel),

rbf(xn, xm) = e−γ ∥xn−xm∥
2
, (8)

where the value of the hyperparameter γ > 0 is usually de-
termined in a calibration procedure prior to the training phase
(if no particular set of values for γ is known for the data, a
good strategy is to try exponentially growing sequences like γ ∈

{. . . , 2−3, 2−2, . . .} [32]).
Gaussian kernels have the advantage of not suffering as much

from numerical difficulties as polynomial kernels [32] and, in
general, compare favorably to sigmoid or tanh kernels (which are,
strictly speaking, not positive semi-definite) [33]. They implicitly
map the feature vector onto an infinite-dimensional space [10].
In principle, a Gaussian kernel also includes the linear kernel as
an asymptotic case [34]. However, we explicitly include a linear
kernel for convenience, denoted by the special value γ = −1.
Therefore, we formally define

k(xn, xm) :=

{
rbf(xn, xm) (γ > 0)
xn · xm (γ = −1),

(9)

as the kernel function for our experiments.

In the following, we symbolically write cSVM(C, γ )
to denote the training of the classical SVM defined
by Eqs. (3)–(5) with the kernel function given in
Eq. (9).

For the computational work associated with cSVM, we used the
C++ library LIBSVM [35], the Python module Scikit-learn [36],
and a quadratic programming solver from the Python package
CVXOPT [37]. All packages produced identical results, i.e., the
global optimum of the convex optimization problem.

2.2. The quantum SVM

The solution to Eqs. (3)–(5) consists of real numbers αn ∈

R. However, the DW2000Q can only produce discrete, binary



D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006 3

solutions to a QUBO (see Eq. (1)). Therefore, we use an encoding
of the form

αn =

K−1∑
k=0

BkaKn+k, (10)

where aKn+k ∈ {0, 1} are binary variables, K is the number of
binary variables to encode αn, and B is the base used for the
encoding. In practice, we obtained good results for B = 2 or
B = 10 and a small number of K (see also the list of arguments
given below).

To formulate the QP problem given in Eqs. (3)–(5) as a QUBO
(see Eq. (1)), we use the encoding defined in Eq. (10) and in-
troduce a multiplier ξ to include the second constraint given in
Eq. (5) as a squared penalty term. We obtain

E =
1
2

∑
nmkj

aKn+kaKm+jBk+jtntmk(xn, xm)

−

∑
nk

BkaKn+k + ξ

(∑
nk

BkaKn+ktn

)2

(11)

=

N−1∑
n,m=0

K−1∑
k,j=0

aKn+kQ̃Kn+k,Km+jaKm+j, (12)

where Q̃ is a matrix of size KN × KN given by

Q̃Kn+k,Km+j =
1
2
Bk+jtntm(k(xn, xm) + ξ )

− δnmδkjBk. (13)

Since Q̃ is symmetric, the upper-triangular QUBO matrix Q re-
quired for the QUBO formulation given in Eq. (1) is defined by
Qij = Q̃ij + Q̃ji for i < j and Qii = Q̃ii. Note that the constraint
Eq. (4) is automatically included in Eq. (11) through the encoding
given in Eq. (10), since the maximum for αn is given by

C =

K∑
k=1

Bk, (14)

and αn ≥ 0 by definition.
Given K , each αn can take only 2K different values accord-

ing to Eq. (10). At first, it may seem questionable why a small
number of B and K should be sufficient. The following arguments
and empirical findings for SVMs motivated us to try the QUBO
approach:

1. A typical solution to Eqs. (3)–(5) consists of many αn = 0
with only a few αm ̸= 0 (the corresponding data points
{xm} are the support vectors). On a digital computer using
floating-point numbers, establishing convergence to ex-
actly 0 is a subtle task, whereas the encoding in Eq. (10)
directly includes this value.

2. The box constraint Eq. (4) is automatically satisfied by the
choice of the encoding Eq. (10) (see Eq. (14)).

3. In principle, one can extend the encoding Eq. (10) to frac-
tional numbers by replacing the base Bk with Bk−k0 for
some k0 ∈ N. Eventually, this would yield the same range
of floating-point numbers as used in conventional digital
computers, namely the IEEE standard for floating-point
arithmetic [38]. However, it was observed that this kind of
precision is not required for SVMs to produce reasonable
results (see [39]), and it would also not be feasible with
the current generation of QA devices.

4. For the classification task addressed by an SVM, the global
order of magnitude of all αn is often not as important
as the relative factors between different αn. This can be

understood by studying the effect of substituting αn ↦→ Sαn
for some factor S in Eqs. (3)–(5). Since E and E/S2 are
optimal for the same {αn}, and the hyperparameters of the
box constraint are calibrated separately, it only replaces the
linear term in Eq. (3) by −

∑
n αn/S. This term only affects

the size of the margin between the decision boundary and
the support vectors (see also [10]). However, if this is still
found to be an issue, one can simply adjust the encoding
Eq. (10) accordingly.

5. Especially for the Gaussian kernel given in Eq. (8), points
with a large distance ∥xn−xm∥ ≫ 1 result in k(xn, xm) ≈ 0.
This can be used to reduce couplings between the qubits
such that embedding the problem on the quantum an-
nealer is less complex. This may either yield better so-
lutions or allow larger problems to be embedded on the
DW2000Q.

6. The constraint
∑

n antn = 0 mathematically corresponds to
an optimal bias b in the decision function given in Eq. (6)
(see [10]). We have included it in Eq. (11) through the
multiplier ξ . However, the constraint need not be satisfied
exactly for the classification task to produce good results.
Since the bias b is only one parameter, it can easily be
adjusted afterwards if necessary. For this reason, it can
be that ξ = 0 already suffices to get reasonable re-
sults. Furthermore, the special value ξ = 1 yields the
Mangasarian–Musicant variant of an SVM (see [40,41]
for more information). This variant has been shown to
produce equally good classifiers while, at the same time,
being numerically much more tractable [15]. An alternative
approach would be to include ξ in the parameter set that
has to be optimized (as conventionally done for Lagrange
multipliers) by choosing an additional encoding for ξ such
as Eq. (10). In this case, it would suffice to replace the last
term in Eq. (11) by the linear penalty term ξ

∑
n antn. We

experimented with this approach and it yields similar but
less robust results (data not shown). For this reason, and
due to the (on present quantum annealers) small set of
numbers represented by the encoding Eq. (10), and also
because of the SVM’s sensitivity to the bias, we found it
more convenient to keep ξ as a hyperparameter, and if
necessary adjust the bias afterwards (see also Appendix A).

The last step required to run the optimization problem on the
DW2000Q is the embedding procedure [42,43]. It is necessary
because in general, the QUBO given in Eq. (1) includes some
couplers Qij ̸= 0 between qubit i and qubit j for which no physical
connection exists on the chip (the connectivity of the DW2000Q
is given by the Chimera topology [22]). The idea of embedding
is to combine several physical qubits to one logical qubit (also
called chain) by choosing a large negative value for their coupling
strengths to favor solutions where the physical qubits are aligned.
This can be used to increase the logical connectivity between the
qubits.

We use a function provided by D-Wave Systems Inc. to gen-
erate embeddings for the QUBOs given by Eq. (13) [44]. When
no embedding can be found, we successively decrease the num-
ber of nonzero couplers ncpl by setting the smallest couplers to
zero until an embedding is found. This works especially well in
combination with the Gaussian kernel given in Eq. (8), where
points with a large squared distance ∥xn − xm∥

2 only produce
negligible contributions to the QUBO. Typical values for ncpl for
the applications discussed in Section 3 are between 1600 and
2500, while the number of required qubits ranges from 28 to 114
with peaks at 56, 58, 84, and 87.

We chose to test the default mode of operation of the
DW2000Q with an annealing time of 20µs and leave the analysis



4 D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006

of improving the QA results by advanced features like reverse
annealing, spin-reversal transforms, special annealing schedules,
or alternative embedding heuristics to the future [23,45,46].

To summarize, the final QA version of the SVM defined by
the QUBO in Eq. (13) depends on the following hyperparameters:
the encoding base B, the number K of qubits per coefficient αn,
the multiplier ξ , and the kernel parameter γ (the number ncpl
of strongest couplers embedded on the DW2000Q is different for
every run and is not a parameter of the SVM itself).

We denote the QA version of an SVM defined
in Eq. (13) as qSVM(B, K , ξ , γ ), by analogy with
cSVM(C, γ ) defined in Eqs. (3)–(5),

For each run on the DW2000Q, we consider the twenty lowest-
energy samples from 10,000 reads, denoted by qSVM(B, K , ξ , γ )#i
for i = 0, . . . , 19. Note that the cut at i = 20 is arbitrary; one
could also consider 50 or more samples from the distribution if
appropriate.

In principle, it can happen that a particular sample #i yields
only αn = 0 or αn = C such that the bias b in Eq. (7) is undefined.
This reflects the rare situation that no support vectors have been
found. In this case, one may simply discard the affected sample
and consider only the remaining samples.

Note that the DW2000Q produces a variety of close-to-optimal
solutions (i.e., a variety of different coefficients {αn}

(i) obtained
from Eq. (10)). Many of these solutions may have a slightly higher
energy than the global minimum {αn}

∗ found by cSVM, but still
solve the classification problem for the training data as intended.
The different solutions often emphasize different features of the
training data. When applied to the test data, a combination of
these solutions has the potential to solve the classification task
better than cSVM, which only yields the global minimum for the
training data.

For the computational work associated with qSVM, we used
the D-Wave Ocean SDK [44], which provides the functionality
to generate embeddings (see above) and produce results for the
QUBO matrix defined in Eq. (13).

2.3. Using accuracy, AUROC, and AUPRC to assess the classification
performance

To measure the classification performance, we consider a sep-
aration of the data D given in Eq. (2) into two disjoint subsets
D(train) and D(test). The training data D(train) is used to train either
cSVM(C, γ ) or qSVM(B, K , ξ , γ ). In both cases, the result of the
training is the set of coefficients {αn}, which can be used to
make class predictions by means of the decision function given
in Eq. (6). The classifier is then evaluated for the test data D(test)

by comparing the class prediction t̃n = sign(f (xn)) with the true
label tn for each (xn, tn) ∈ D(test) from the test data.

A straightforward method to assess the performance of a
classifier is to count the number of correct predictions, i.e., the
number of true positives TP for which t̃n = tn = 1. Dividing this
number by the total number of points |D(test)

| yields the classi-
fication accuracy. However, in binary classification problems, the
accuracy is generally considered a bad measure [47,48], because
a higher accuracy does not necessarily imply that the classifier
is better. As a simple example, consider a dataset with 80%
negatives. A trivial all-negative classifier, which always returns
−1, would already achieve an accuracy of 80%, even though it is
practically useless. Instead, we are often interested in identifying
good positives, especially if the dataset contains a lot of negatives.

To obtain a more robust measure, we first count the number
of all cases that can occur when making the class prediction t̃n =

sign(f (xn)): the number TP of true positives where t̃n = tn = 1,

the number FP of false positives where t̃n = 1 but tn = −1,
the number TN of true negatives where t̃n = tn = −1, and the
number FN of false negatives where t̃n = −1 but tn = 1 (note
that the sum of these four numbers is equal to the number of test
data points |D(test)

|). Given these counts, one can compute the true
positive rate TPR = TP/(TP+FN) (also known as Recall), the false
positive rate FPR = FP/(FP+TN), and the Precision = TP/(TP+FP)
(defined to be 1 if TP + FP = 0).

Unfortunately, simply using one of these ratios instead of the
classification accuracy does not solve the above problem either.
For instance, if we were to measure success by means of the
smallest false positive rate FPR, we would be satisfied with the
trivial all-negative classifier, since it would never produce a false
positive such that FPR = 0.

The solution to this kind of problem is to use more robust
metrics such as AUROC (area under the Receiver Operating Char-
acteristic curve) and AUPRC (area under the Precision–Recall
curve) [48,49]. These metrics are not based on a single evaluation
of the classifier, but rather on the performance of the classifier as
a function of the bias b in Eq. (6). By sweeping b, the classifier is
artificially moved from an all-negative classifier (corresponding
to b → −∞, where TPR = FPR = Recall = 0 and Precision = 1)
to an all-positive classifier (corresponding to b → ∞, where
TPR = FPR = Recall = 1). In essence, this procedure moves the
decision boundary through all test data points, thereby measuring
the characteristic shape of the decision boundary.

By plotting TPR vs. FPR, one generates the ROC curve, and by
plotting Precision vs. Recall one generates the Precision–Recall
curve (see Fig. 3 below for an example of these curves). The area
under both curves is termed AUROC and AUPRC, respectively,
and represents a much more robust measure for the quality
of a classifier than the classification accuracy. This means that
optimizing a classifier for AUROC and AUPRC is unlikely to result
in a useless classifier, which can happen when optimizing for the
accuracy instead [48] (see the example given above).

Note, however, that there is a particular situation in which
optimizing for the accuracy is appropriate, namely to obtain a
good value for the bias b in the decision function given in Eq. (6).
The reason for this is that, ultimately, we are interested in making
a definite class prediction t = sign(f (x)) for an arbitrary point x.
Since AUROC and AUPRC are independent of b, we cannot use
these metrics to obtain an optimal bias. Instead, a reasonable
option is to use the value of b for which the accuracy with respect
to the training data is maximal. This is especially true for qSVM,
for which the candidate given in Eq. (7) may not be optimal. This
is the case for the real test problem below (see also Appendix A).

In the following applications, we report accuracy, AUROC, and
AUPRC to compare the classifiers and to measure the classifica-
tion performance.

3. Applications

3.1. Two-dimensional synthetic data

As a proof of concept and to understand the power of qSVM,
we consider a small set of two-dimensional synthetic data. This
has the advantage that the results can be easily visualized and the
quality of the many different classifiers returned by the quantum
annealer can be compared.

The dataset D consists of n = 1, . . . , 40 points (xn, tn), where
the first half corresponds to the negative class tn = −1 rep-
resenting an outer region, and the second half corresponds to
the positive class tn = 1 representing an inner region. It was
generated according to

xn = rn

(
cosϕn

sinϕn

)
+

(
sxn
syn

)
, (15)



D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006 5

Fig. 1. Visualization of the classification boundary resulting from (a) the global
optimum produced by the classical SVM, and (b)–(d) various solutions from
the ensemble produced by the QA version of the SVM for the same problem
(the identifier qSVM#i indicates the (i+1)th sample produced by the DW2000Q,
starting at i = 0 and ordered by lowest energy). The parameters for the SVMs are
B = K = 2, ξ = 0, γ = 16, and C = 3. The two classes for the two-dimensional
synthetic data are plotted as red squares (tn = 1) and blue circles (tn = −1),
respectively. The corresponding background color indicates the distance to the
decision boundary. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

where rn = 1 if tn = −1 and rn = 0.15 if tn = 1, ϕn is linearly
spaced on [0, 2π ) for each class, and sxn and syn are drawn from a
normal distribution with mean 0 and standard deviation 0.2.

We visualize the resulting decision boundaries f (x) = 0 for
cSVM(3, 16) in Fig. 1(a), and for three separate solutions from
the ensemble found by qSVM(2, 2, 0, 16) in Fig. 1(b)–(d). For
demonstration purposes, the plotted data points do not come
from a separate test set but are the same 40 points that the SVM
versions have been trained on. The value of the decision function
f (x) given in Eq. (6) determines the background color, obtained by
evaluating f (x) for each point x in the two-dimensional plotting
grid.

We see that cSVM shown in Fig. 1(a) satisfies all the properties
expected from the global minimum of an SVM, i.e., separating
the dataset into two regions where the decision boundary has a
maximum margin to the closest data points (the support vectors).

The DW2000Q, however, automatically produces a variety of
alternative classifiers shown in Fig. 1(b)–(d). Each of them solves
the classification task of the training set as intended, and addi-
tionally highlights different features present in the training data.
While sample #1 shown in Fig. 1(b) still resembles the properties
of the global minimum, sample #6 shown in Fig. 1(c) yields a
more narrow enclosure of the outer circle. The classifier from
sample #16 shown in Fig. 1(d) is even sensitive to the gaps in
the outer circle. This result suggests that a combination of the
classifiers returned by qSVM may be more powerful than the
single classifier produced by cSVM.

3.2. Application to real data

We compare the performance of both cSVM and qSVM when
applied to real data obtained from the biology experiment studied

in [8]. This data was provided to us on request. Briefly, the classifi-
cation task is to decide whether a certain protein (a transcription
factor labeled Mad, Max, or Myc) binds to a certain DNA sequence
such as CCCACGTTCT (see also [50,51]).

The data consists of nine separate datasets labeled Mad50,
Max50, Myc50, Mad70, Max70, Myc70, Mad80, Max80, and
Myc80. The datasets consist of N = 1655 (Mad), N = 1599
(Max), and N = 1584 (Myc) data points, respectively. The data
points (xn, tn) for n = 1, . . . ,N consist of a 40-dimensional
vector xn ∈ {−1, +1}40 representing the DNA sequence, and a
label indicating whether the protein binds to this DNA sequence
(tn = +1) or not (tn = −1). The DNA sequence is encoded by
mapping each base-pair in the DNA alphabet {A,C,G,T} according
to A ↦→ (+1, −1, −1, −1), C ↦→ (−1, +1, −1, −1), G ↦→

(−1, −1, +1, −1), and T ↦→ (−1, −1, −1, +1), and concatenat-
ing all encoded base-pairs. An encoding of this type is sometimes
called one-hot encoding (often using 0 instead of −1) since only
one element in each encoded base-pair is +1 (cf. also [8,50]). For
each dataset, the number behind the protein label indicates the
percentage of negative classes such that e.g. the dataset Max80
contains 80% non-binding DNA sequences (tn = −1) and 20%
binding DNA sequences (tn = +1).

We separate each of the nine datasets into 90% training data
D(train) and 10% test data D(test). The training data is used for
calibration of the hyperparameters and for training the classifiers.
The test data is unseen during training and exclusively used to
test the classifiers in the test phase. The entire data handling
procedure is sketched in Fig. 2.

3.2.1. Calibration phase: Results for a small training dataset
To select the hyperparameters of qSVM, we use 10-fold Monte

Carlo (or split-and-shuffle) cross-validation. This means that we
train qSVM(B, K , ξ , γ ) on 2% of D(train) (approximately 30 data
points) and evaluate its performance on the remaining data
points of D(train) for validation. The data is then shuffled and the
process is repeated a total number of ten times (see Fig. 2).

The small fraction of 2% was chosen because of the size limi-
tations of the quantum annealer (cf. also [8]). Since this is a very
small amount of data, we performed some initial tests before
systematically calibrating the hyperparameters. In these tests,
we observed that qSVM can produce significantly stronger clas-
sifiers than cSVM for the same little training data and param-
eters. One example is shown in Fig. 3, where the ROC and PR
curves are plotted for qSVM(10, 3, 0, −1)#14 (see Fig. 3(a)) and
for cSVM(111, −1) (see Fig. 3(b)), generated by sweeping the bias
b as explained in Section 2.3. While the QA version produces
almost optimal curves, the global optimum from the classical
SVM obviously lacks precision when applied to the much larger
validation data.

For each dataset, the hyperparameters are calibrated by eval-
uating qSVM for B ∈ {2, 3, 5, 10} and K ∈ {2, 3} (cf. Eq. (10)), ξ ∈

{0, 1, 5} (cf. Eq. (11)), and γ ∈ {−1, 0.125, 0.25, 0.5, 1, 2, 4, 8}
(cf. Eq. (9)). We generically consider the classifiers {α

(i)
n } from

the twenty best solutions qSVM(B, K , ξ , γ )#i for i = 0, . . . , 19 as
described in Section 2.2. The evaluation is repeated ten times for
the Monte Carlo cross-validation. Therefore, each set of hyper-
parameters for each dataset results in a total of 200 values for
AUROC, AUPRC, and accuracy.

An example of the calibration procedure for the dataset Max70
is shown in Fig. 4. For this dataset, we see that the linear kernels
denoted by γ = −1 (see Eq. (9)) dominate (but Gaussian kernels
perform still reasonably well). The selected set of hyperparam-
eters in this case is B = 10, K = 3, ξ = 5, and γ =

−1, corresponding to the leftmost points in Fig. 4. We also see
fluctuations in the mean accuracy which are not reflected by
AUROC and AUPRC. Since AUROC and AUPRC are insensitive to the



6 D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006

Fig. 2. Data handling procedure for the computational biology problem. Each of the nine datasets is split into 90% calibration and training data D(train) and 10% test
data D(test) . In the calibration phase, 10-fold Monte Carlo cross-validation is used to select the hyperparameters B, K , ξ , and γ (see Section 2.2), training on 2% of
D(train) and validating on the rest. In the test phase, the selected qSVM(B, K , ξ , γ ) is applied to every 2% slice of D(train) . The resulting classifiers are combined to
classify the test data D(test) to evaluate the AUROC, the AUPRC, and the classification accuracy (see Section 2.3). The test procedure is repeated 10 times to gather
statistics.

Fig. 3. (Color online) Example for the generated ROC and PR curves to measure
the quality of the classifiers. (a) qSVM(10, 3, 0, −1)#14 using ncpl = 2000
couplers, and (b) cSVM(111, −1) (note that C = 111 for cSVM corresponds to
B = 10 and K = 3, see Eq. (14)). Both SVMs have been trained and validated on
the same data, taken from the fifth step in the 10-fold cross-validation procedure
for the dataset Max80 [8].

Table 1
Selected hyperparameters for each dataset [8]. The parameters are the base B,
the number K of qubits per coefficient αn , the multiplier ξ , the kernel parameter
γ , and the box constraint parameter C (see Section 2). The value of C is fixed
by B and K through Eq. (14) and is given for reference only.
Dataset B K ξ γ C

Mad50 2 3 5 0.125 7
Max50 2 3 5 0.125 7
Myc50 2 2 0 0.125 3
Mad70 10 3 5 −1 111
Max70 10 3 5 −1 111
Myc70 10 3 5 −1 111
Mad80 10 3 5 −1 111
Max80 10 3 0 −1 111
Myc80 10 3 5 −1 111

bias, this indicates that the choice for the bias b given by Eq. (7)
may not always be optimal (see Appendix A for a way to improve
the bias if the accuracy matters).

We selected the hyperparameters based on both mean AUROC
and AUPRC. The reason for this is that we observed, when select-
ing exclusively based on the best AUPRC (cf. [8]), we sometimes
obtained hyperparameters yielding AUROC ≈ 0.5 (the result for
a random classifier [48]).

In Table 1, we list the best hyperparameters selected for each
dataset. The trend from Gaussian kernels to linear kernels can be
observed in all datasets: For Mad50, Max50, and Myc50, where
half of the data is classified as positive and the other half as nega-
tive, only the Gaussian kernels can produce a reasonable decision
boundary (see also Table 2 in Appendix B). But when going to
higher class imbalances as present in the datasets Mad80, Max80,



D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006 7

Fig. 4. Calibration performance of qSVM for the best sets of hyperparameters
(B, K , ξ , γ ), ordered by mean AUROC, for the dataset Max70 [8]. Shown are
the AUROC (blue dashed line), the AUPRC (red dash-dotted line), the accuracy
(green dotted line), and the respective standard deviations (shaded areas) over
200 classifiers (10 different calibration folds times 20 of the best solutions from
the DW2000Q). Lines connecting the averages are guides to the eye. Squares,
circles, and triangles denote the maximum performance among each of the 200
classifiers. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

and Myc80, a linear decision boundary suffices to classify the DNA
sequences.

The numerical results of the calibration procedure for each
dataset in comparison with the corresponding cSVM are listed in
Table 2 in Appendix B.

3.2.2. Training and test phase: Results for a larger training dataset
In this section, we examine a way to overcome the size limita-

tions of the DW2000Q for real applications with a bigger training
dataset. We take the same nine DNA datasets as before, but now
consider the full datasets D(train) for training a classifier. The goal
is to construct an aggregated classifier from the results of qSVM
trained on each 2% slice of the available training data (see Fig.
Fig. 2). Each of the L = 50 slices is labeled D(train,l) for l =

0, . . . , 49. The hyperparameters for each dataset are taken from
the calibration results listed in Table 1.

The combined classifier is constructed in two steps. First, for
each slice D(train,l), the twenty best solutions from the DW2000Q
(labeled qSVM(B, K , ξ , γ )#i for i = 0, . . . , 19) are combined
by averaging over the respective decision functions f (l,i)(x) (see
Eq. (6)). Since the decision function is linear in the coefficients
and the bias (b(l,i) is computed from α

(l,i)
n via Eq. (7)), this pro-

cedure effectively results in one classifier with an effective set
of coefficients α

(l)
n =

∑
i α

(l,i)
n /20 and an effective bias b(l) =∑

i b
(l,i)/20.

The second step is to average over the L = 50 slices. Note,
however, that the data points (x(l)n , t (l)n ) ∈ D(train,l) are now differ-
ent for each l. The full decision function is

F (x) =
1
L

∑
nl

α(l)
n t (l)n k(x(l)n , x) + b, (16)

where b =
∑

l b
(l)/L. As before, a decision for the class label of a

point x is obtained through t̃ = sign(F (x)). We use this decision

Fig. 5. Performance of qSVM (solid green line) and cSVM (dash-dotted red line)
as measured by (a) AUROC, (b) AUPRC, and (c) accuracy (see Section 2.3) using
the decision function given in Eq. (16) for each of the nine datasets from the
computational biology problem [8]. The parameters for each dataset are taken
from Table 1. The standard deviation over ten repetitions (see Fig. 2) is shown
as shaded areas. Lines are guides to the eye. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 6. Classification accuracy of qSVM (solid green line) and cSVM (dash-dotted
red line) as shown in Fig. 5(c), after adjusting the suboptimal bias b to b∗

where the accuracy for the training data is higher (see Appendix A). The metrics
AUROC and AUPRC are the same as in Fig. 5(a) and (b). (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

function to evaluate the metrics discussed in Section 2.3 for the
test data D(test) using the procedure illustrated in Fig. 2.

Note that in [8], instead of separating the training data into
50 disjoint subsets (each containing 2% of the data), an approach
similar to bagging (bootstrap aggregating) [52] was used. In that
approach, 50 subsets are constructed by drawing 2% of the train-
ing data with replacement. We also tested this bagging inspired
approach (data not shown) and found that, although the results
were similar, the fluctuations were much larger. This makes sense
because drawing with replacement means that different subsets
can share the same data points and also include a single point
more than once. Consequently, one may expect that some points
are not included in any of the datasets. In fact, the probability that
a certain x ∈ D(train) is not included in any of the D(train,l) is (1 −

1/N)N ≈ 36.8% for N = |D(train)
| ≈ 1500. Apart from this counting

argument, the general observation in [52] was that bagging is
better suited for unstable classification algorithms, whereas SVMs



8 D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006

are stable. We therefore conclude that splitting the training data
in disjoint, equally-sized subsets is superior.

As before, it is interesting to compare the results from the
combined classifier with results from applying cSVM to the same
data points and parameters. Note that Eq. (16) also applies to
cSVM, but that α

(l)
n comes directly from the global minimum to

Eqs. (3)–(5) and not from an average of the twenty best solutions
produced by DW2000Q. The results for each dataset are shown
in Fig. 5, where the mean and the standard deviation have been
obtained from ten repetitions of the test procedure as sketched
in Fig. 2.

Based on the resulting accuracy shown in Fig. 5(c), one could
conclude that cSVM outperforms qSVM (especially for the dataset
Max80 for which we studied one of the contributing classifiers in
Fig. 3). However, from the metrics AUROC and AUPRC reported
in Fig. 5(a) and (b), we find that the resulting classifiers from the
QA version are in fact superior. This hints at a problem in the
construction of the final decision function given in Eq. (16), which
would have been overlooked if the accuracy had not been eval-
uated: Recall that AUROC and AUPRC are generated by sweeping
the bias b in Eq. (16) to move the decision boundary through the
feature space R40 from a full negative predictor to a fully positive
predictor (see Section 2.3). If AUROC and AUPRC are better for
qSVM, this means that the bias b has been chosen suboptimally
and there must be some bias b∗ for which the classifier produces
better results.

The reason for this is that Eq. (7) from the original SVM may
not be suited to obtain the optimal bias for the QA version of the
SVM defined by Eq. (11). The condition for an optimal bias is the
constraint Eq. (5), included through the multiplier ξ in Eq. (11).
Since ξ = 0 for Max80 (cf. Table 1), this explains the particularly
bad accuracy for this dataset despite better AUROC and AUPRC
(see also the discussion under point 6 of the motivations given in
Section 2.2).

We correct for the suboptimal bias by replacing b with the
value of b∗ for which the classification accuracy for the training
data D(train) is maximal. Note that this step does not require a
new training of qSVM. It is a scan of a single parameter that can
be done ‘‘offline’’, i.e., after obtaining the coefficients {α

(l)
n }. As

such, this step is simple and efficient and could, in principle, be
directly added to the data handling scheme presented in Fig. 2.
See Appendix A for more information.

The classification accuracy of qSVM after adjusting the bias for
each dataset is shown in Fig. 6. It clearly improves the results for
the linear kernel (γ = −1) with high class imbalance (Mad80,
Max80, and Myc80). We also observe that the Gaussian kernel
used for Mad50, Max50, and Myc50 was not affected as strongly
by the suboptimal bias. As changing the bias of the decision
function given in Eq. (16) does not affect AUROC and AUPRC,
the results shown in Fig. 5(a) and (b) also apply to the adjusted
version of qSVM.

To summarize, we observe a better or comparative perfor-
mance of qSVM compared to cSVM for all datasets, as measured by
AUROC, AUPRC, and classification accuracy. For completeness, the
numerical results of the test are given in Table 2 in Appendix B.

4. Conclusion

In this paper, we introduced and studied the implementation
of kernel-based SVMs on a DW2000Q quantum annealer [23]. We
found that the optimization problem behind the training of SVMs
can be straightforwardly expressed as a QUBO and solved on a
quantum annealer. The QUBO form exhibits certain mathematical
advantages, such as its ability to produce exact zeros or the
inherent inclusion of the box constraint. Each run of the training
process on the quantum annealer yields a distribution of different

Fig. 7. Classification accuracy for the training data D(train) (dotted green line)
and the test data D(test) (solid blue line) of the dataset Myc70 as a function of
the bias b in the decision function F (x) given in Eq. (16). The bias b∗ is chosen to
be optimal for the training data. The optimal bias for the test data (i.e. the peak
of the solid blue line) is slightly smaller. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

classifiers that can later be used to classify arbitrarily many test
data points.

Our results show that the ensemble of classifiers produced by
the quantum annealer often surpasses the single classifier ob-
tained by the classical SVM for the same computational problem
as measured by AUROC, AUPRC, and accuracy. The advantage
stems from the fact that the DW2000Q produces not just the
global optimum for the training data, but a distribution of many
reasonably good, close-to-optimal solutions to the given opti-
mization problem. A combination of these has the potential to
generalize better to the test data. This observation is in line
with findings in other machine learning problems studied on a
quantum annealer [8,24].

Therefore we conclude that the QA version of the SVM is a
useful practical alternative to the classical SVM. If the capabilities
of future quantum annealers continue to scale at the current pace,
training SVMs on quantum annealers may become a valuable tool
for classification problems, and can already be helpful for hard
problems where only little training data is available.

An interesting project for future research would be to examine
other approaches to building strong classifiers by constructing
weighted sums of the class predictions from several SVMs as
done in boosting methods like AdaBoost or QBoost [3,10,53,54].
It would also be valuable to examine how the QA results for
SVMs can be further improved using advanced features offered
by the DW2000Q like reverse annealing, spin-reversal transforms,
special annealing schedules, or enhanced embeddings [23,45,46].
Furthermore, since SVMs can also be used for multi-class clas-
sification and regression tasks [9], it seems worthwhile to study
corresponding applications to such problems using the QA formu-
lation presented here. Finally, it would be a potentially interesting
avenue to explore if suitable modifications to the original SVM
can lead to an equally good distribution of solutions as the one
produced by the quantum annealer.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.



D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006 9

Table 2
Calibration and test results for all SVMs. The reported metrics are the mean area under the ROC curve, and the mean area under
the Precision–Recall curve (see Section 2.3), and the mean classification accuracy. The parameters of the QA version of the SVM are
qSVM(B, K , ξ , γ ) where B is the encoding base, K is the number of qubits per coefficient αn , ξ is a Lagrangian multiplier, and γ is
the kernel parameter. The corresponding version of the classical SVM is cSVM(C, γ ) where C is given by Eq. (14).
Dataset SVM Parameters Calibration Testing

AUROC AUPRC Accuracy AUROC AUPRC Accuracy

Mad50 qSVM(2,3,5,0.125) 0.71 0.71 0.63 0.88 0.92 0.81
cSVM(7,0.125) 0.73 0.73 0.60 0.89 0.92 0.82

Max50 qSVM(2,3,5,0.125) 0.73 0.74 0.64 0.94 0.95 0.87
cSVM(7,0.125) 0.73 0.74 0.63 0.94 0.95 0.85

Myc50 qSVM(2,2,0,0.125) 0.68 0.68 0.61 0.92 0.94 0.84
cSVM(3,0.125) 0.69 0.70 0.58 0.92 0.94 0.85

Mad70 qSVM(10,3,5,−1) 0.75 0.58 0.65 0.92 0.91 0.87
cSVM(111,−1) 0.70 0.47 0.67 0.90 0.88 0.85

Max70 qSVM(10,3,5,−1) 0.82 0.68 0.69 0.93 0.89 0.86
cSVM(111,−1) 0.75 0.57 0.70 0.90 0.85 0.85

Myc70 qSVM(10,3,5,−1) 0.72 0.57 0.63 0.86 0.82 0.87
cSVM(111,−1) 0.72 0.51 0.66 0.83 0.76 0.82

Mad80 qSVM(10,3,5,−1) 0.85 0.66 0.69 0.93 0.86 0.93
cSVM(111,−1) 0.78 0.50 0.78 0.90 0.82 0.90

Max80 qSVM(10,3,0,−1) 0.85 0.62 0.67 0.95 0.94 0.95
cSVM(111,−1) 0.78 0.47 0.77 0.94 0.92 0.91

Myc80 qSVM(10,3,5,−1) 0.73 0.48 0.60 0.94 0.91 0.93
cSVM(111,−1) 0.71 0.37 0.71 0.93 0.89 0.89

Acknowledgments

We would like to thank Richard Li and Daniel Lidar for pro-
viding preprocessed data from TF-DNA binding experiments. We
are grateful to Seiji Miyashita for helpful discussions. Access and
compute time on the D-Wave machine located at the headquar-
ters of D-Wave Systems Inc. in Burnaby (Canada) were provided
by D-Wave Systems Inc. D.W. is supported by the Initiative and
Networking Fund of the Helmholtz Association, Germany through
the Strategic Future Field of Research project ‘‘Scalable solid state
quantum computing (ZT-0013)’’.

Appendix A. Adjusting the bias in qsvm

The choice for the bias b given in Eq. (7) as a function of the
coefficients {αn} is based on the condition that the coefficients are
the global minimum {αn}

∗ of the QP problem given in Eqs. (3)–
(5). In fact, it is the constraint given in Eq. (5) that identifies an
optimal bias b [15].

However, for qSVM, a new classifier is generated by combining
some of the lowest-energy solutions produced by the quantum
annealer, which is in general not equal to {αn}

∗. Moreover, the
constraint for an optimal bias given in Eq. (5) is included through
the multiplier ξ in Eq. (11), so it may not be satisfied for all
solutions produced by the quantum annealer. Therefore, it can
happen that the bias from Eq. (7) is not suitable for qSVM. This
is what happened to the rightmost three datasets shown in Fig. 5
(especially for Max80 where ξ = 0, see Table 1). This problem
only affects the actual accuracy and not the more robust metrics
AUROC and AUPRC (see Section 2.3).

Since the bias is only a single parameter, this problem can
easily be solved by replacing b with another bias b∗, for which
the accuracy for the training data D(train) is highest. Note that this
step does not require a new training of qSVM. The result of the
training is given by the set of coefficients {αn}, which enter the
decision function in Eq. (6). The bias b can be adjusted ‘‘offline’’,
i.e., independently of the {αn}.

Note that it is only allowed to use the training data D(train)

for adjusting the bias, and not the test data D(test). Modifying a
classifier as a function of its performance on the test data D(test)

would invalidate the statement that the classifier can generalize
well to unseen data.

An example of such a scan of the bias b is shown in Fig. 7 for
the dataset Myc70. It was taken from one out of ten repetitions

of the test procedure (see Fig. 2). The classifier has been obtained
from an average over 1000 decision functions (20 lowest-energy
samples times 50 slices of the training data). One can see that the
peak of the accuracy for D(train) (dotted line) is close but not equal
to the peak of the accuracy for D(test) (solid line).

Appendix B. Calibration and test results

In Table 2, we list the numerical results for the calibration
and the test phase for the application of cSVM and qSVM to the
computational biology problem.

For the calibration phase, where 2% of the data was used for
training, qSVM often produces stronger or equally strong classi-
fiers. In the testing phase, where the classifiers for each of the 50
disjoint subsets of the training data were combined, qSVM almost
always surpasses cSVM in all of the three metrics.

References

[1] H. Neven, V.S. Denchev, G. Rose, W.G. Macready, 2008. arXiv:0811.0416.
[2] K.L. Pudenz, D.A. Lidar, Quantum Inf. Process. 12 (2012) 2027.
[3] H. Neven, V.S. Denchev, G. Rose, W.G. Macready, in: S.C.H. Hoi, W. Buntine

(Eds.), Proceedings of the Asian Conference on Machine Learning, in:
Proceedings of Machine Learning Research (PMLR), vol. 25, Singapore
Management University, Singapore, 2012, pp. 333–348.

[4] S.H. Adachi, M.P. Henderson, 2015. arXiv:1510.06356.
[5] T.E. Potok, C. Schuman, S. Young, R. Patton, F. Spedalieri, J. Liu, K.-T. Yao,

G. Rose, G. Chakma, J. Emerg. Technol. Comput. Syst. 14 (2018) 19:1.
[6] D. O’Malley, V.V. Vesselinov, B.S. Alexandrov, L.B. Alexandrov, PLoS One 13

(2018) 1.
[7] D. Ottaviani, A. Amendola, 2018. arXiv:1808.08721.
[8] R.Y. Li, R. Di Felice, R. Rohs, D.A. Lidar, npj Quantum Inf. 4 (2018) 14.
[9] B. Schölkopf, A.J. Smola, Learning with Kernels: Support Vector Machines,

Regularization, Optimization, and Beyond, MIT Press, Cambridge, MA, USA,
2001.

[10] C.M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics), Springer-Verlag, Berlin, Heidelberg, 2006.

[11] R.-H. Li, G.G. Belford, Instability of Decision Tree Classification Algorithms
Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’02, ACM, New York, NY, USA,
2002, pp. 570–575.

[12] X. Yuan, X. Yuan, F. Yang, J. Peng, B.P. Buckles, FLAIRS Conference, 2003.
[13] H. Xu, C. Caramanis, S. Mannor, J. Mach. Learn. Res. 10 (2009) 1485.
[14] E. Raczko, B. Zagajewski, Eur. J. Remote Sens. 50 (2017) 144.
[15] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical

Recipes 3rd Edition: The Art of Scientific Computing, Cambridge University
Press, New York, USA, 2007.

[16] Y. Tang, Proceedings of the International Conference on MachineLearning
(ICML) Workshops, 2013.

http://arxiv.org/abs/0811.0416
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb2
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb3
http://arxiv.org/abs/1510.06356
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb5
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb5
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb5
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb6
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb6
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb6
http://arxiv.org/abs/1808.08721
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb8
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb9
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb9
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb9
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb9
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb9
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb10
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb10
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb10
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb11
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb13
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb14
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb15
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb15
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb15
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb15
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb15


10 D. Willsch, M. Willsch, H. De Raedt et al. / Computer Physics Communications 248 (2020) 107006

[17] S. Kim, S. Kavuri, M. Lee, in: M. Lee, A. Hirose, Z.-G. Hou, R.M. Kil
(Eds.), Neural Information Processing, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013, pp. 458–465.

[18] M. Lazri, S. Ameur, Atmos. Res. 203 (2018) 118.
[19] M. Zareapoor, P. Shamsolmoali, D.K. Jain, H. Wang, J. Yang, Pattern

Recognit. Lett. 115 (2018) 4, multimodal Fusion for Pattern Recognition.
[20] R. Harris, M.W. Johnson, T. Lanting, A.J. Berkley, J. Johansson, P. Bunyk, E.

Tolkacheva, E. Ladizinsky, N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P.
Spear, C. Enderud, C. Rich, S. Uchaikin, M.C. Thom, E.M. Chapple, J. Wang,
B. Wilson, M.H.S. Amin, N. Dickson, K. Karimi, B. Macready, C.J.S. Truncik,
G. Rose, Phys. Rev. B 82 (2010) 024511.

[21] M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R.
Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P.
Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich,
M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson,
G. Rose, Nature 473 (2011) 194.

[22] P.I. Bunyk, E.M. Hoskinson, M.W. Johnson, E. Tolkacheva, F. Altomare, A.J.
Berkley, R. Harris, J.P. Hilton, T. Lanting, A.J. Przybysz, J. Whittaker, IEEE
Trans. Appl. Supercond. 24 (2014) 1.

[23] D-Wave Systems Inc, Technical Description of the D-Wave Quantum
Processing Unit, Tech. Rep., D-Wave Systems Inc., Burnaby, BC, Canada,
2018, D-Wave User Manual 09-1109A-M.

[24] A. Mott, J. Job, J.-R. Vlimant, D. Lidar, M. Spiropulu, Nature 550 (2017) 375.
[25] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Informa-

tion: 10th Anniversary Edition, Cambridge University Press, New York,
2011.

[26] E. Grumbling, M. Horowitz (Eds.), Quantum Computing: Progress and
Prospects, The National Academies Press, Washington, DC, 2018.

[27] P. Rebentrost, M. Mohseni, S. Lloyd, Phys. Rev. Lett. 113 (2014) 130503.
[28] Z. Li, X. Liu, N. Xu, J. Du, Phys. Rev. Lett. 114 (2015) 140504.
[29] E. Ising, Z. Phys. 31 (1925) 253.
[30] F. Barahona, J. Phys. A: Math. Gen. 15 (1982) 3241.
[31] C.J. Burges, Data Min. Knowl. Discov. 2 (1998) 121.
[32] C.-W. Hsu, C.-C. Chang, C.-J. Lin, A Practical Guide to Support Vector Clas-

sification, Tech. Rep., Department of Computer Science, National Taiwan
University, 2003, http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

[33] H.-T. Lin, C.-J. Lin, A Study on Sigmoid Kernels for SVM and the Training
of Non-PSD Kernels By SMO-Type Methods, Tech. Rep., Department of
ComputerScience, National Taiwan University, 2003, http://www.csie.ntu.
edu.tw/~cjlin/papers/tanh.pdf.

[34] S.S. Keerthi, C.-J. Lin, Neural Comput. 15 (2003) 1667, http://dx.doi.org/10.
1162/089976603321891855.

[35] C.-C. Chang, C.-J. Lin, ACM Trans. Intell. Syst. Technol. (TIST) 2 (2011) 27:1,
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, J. Mach. Learn. Res.
12 (2011) 2825.

[37] M.S. Andersen, J. Dahl, L. Vandenberghe, 2018. https://cvxopt.org, version
1.2.2.

[38] IEEE Std 754-2008, Microprocessor Standards Committee of the IEEE
Computer Society, 3 Park Avenue, New York, NY, USA, 2008, 10016-5997.

[39] B. Lesser, M. Mü, W.N. Gansterer, Proced. Comput. Sci. 4 (2011) 508,
Proceedings of the International Conference on Computational Science,
ICCS 2011.

[40] O.L. Mangasarian, D.R. Musicant, IEEE Trans. Neural Netw. 10 (1999) 1032.
[41] O.L. Mangasarian, D.R. Musicant, in: O.L. Mangasarian, J.-S. Pang (Eds.),

Complementarity: Applications, Algorithms and Extensions, Springer US,
Boston, MA, 2001, pp. 233–251.

[42] V. Choi, Quantum Inf. Process. 7 (2008) 193.
[43] J. Cai, W.G. Macready, A. Roy, 2014. arXiv:1406.2741.
[44] D-Wave Systems Inc, 2018. https://github.com/dwavesystems/dwave-

ocean-sdk, release 1.2.0.
[45] M. Ohkuwa, H. Nishimori, D.A. Lidar, Phys. Rev. A 98 (2018) 022314.
[46] S. Boixo, T. Albash, F.M. Spedalieri, N. Chancellor, D.A. Lidar, Nature

Commun. 4 (2013) 2067.
[47] F.J. Provost, T. Fawcett, R. Kohavi, Proceedings of the Fifteenth International

Conference on Machine Learning, ICML ’98, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1998, pp. 445–453.

[48] C. Cortes, M. Mohri, Proceedings of the 16th International Conference on
Neural Information Processing Systems, NIPS’03, MIT Press, Cambridge, MA,
USA, 2003, pp. 313–320.

[49] J. Davis, M. Goadrich, Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06, ACM, New York, NY, USA, 2006, pp. 233–240.

[50] T. Zhou, N. Shen, L. Yang, N. Abe, J. Horton, R.S. Mann, H.J. Bussemaker, R.
Gordân, R. Rohs, Proc. Natl. Acad. Sci. USA 112 (2015) 4654.

[51] L. Yang, Y. Orenstein, A. Jolma, Y. Yin, J. Taipale, R. Shamir, R. Rohs, Mol.
Syst. Biol. 13 (2017) 910.

[52] L. Breiman, Mach. Learn. 24 (1996) 123.
[53] Y. Freund, R.E. Schapire, Proceedings of the Thirteenth International Con-

ference on Machine Learning (ICML 1996), ICML’96, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004, pp. 148–156.

[54] J. Friedman, T. Hastie, R. Tibshirani, Ann. Statist. 38 (2000) 337.

http://refhub.elsevier.com/S0010-4655(19)30342-X/sb17
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb17
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb17
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb17
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb17
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb18
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb19
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb19
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb19
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb20
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb21
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb22
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb22
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb22
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb22
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb22
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb23
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb23
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb23
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb23
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb23
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb24
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb25
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb25
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb25
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb25
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb25
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb26
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb26
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb26
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb27
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb28
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb29
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb30
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb31
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf
http://dx.doi.org/10.1162/089976603321891855
http://dx.doi.org/10.1162/089976603321891855
http://dx.doi.org/10.1162/089976603321891855
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb36
https://cvxopt.org
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb38
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb38
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb38
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb39
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb39
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb39
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb39
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb39
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb40
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb41
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb41
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb41
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb41
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb41
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb42
http://arxiv.org/abs/1406.2741
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb45
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb46
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb46
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb46
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb47
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb47
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb47
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb47
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb47
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb48
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb48
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb48
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb48
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb48
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb49
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb49
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb49
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb50
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb50
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb50
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb51
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb51
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb51
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb52
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb53
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb53
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb53
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb53
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb53
http://refhub.elsevier.com/S0010-4655(19)30342-X/sb54

	Support vector machines on the D-Wave quantum annealer
	Introduction
	SVMs on a quantum annealer
	The classical SVM
	The quantum SVM
	Using accuracy, AUROC, and AUPRC to assess the classification performance

	Applications
	Two-dimensional synthetic data
	Application to real data
	Calibration phase: Results for a small training dataset
	Training and test phase: Results for a larger training dataset


	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Adjusting the bias in qSVM
	Appendix B. Calibration and test results
	References


