000866332 001__ 866332
000866332 005__ 20240708132829.0
000866332 0247_ $$2doi$$a10.1016/j.wear.2019.203116
000866332 0247_ $$2ISSN$$a0043-1648
000866332 0247_ $$2ISSN$$a1873-2577
000866332 0247_ $$2Handle$$a2128/24022
000866332 0247_ $$2WOS$$aWOS:000513001800001
000866332 037__ $$aFZJ-2019-05488
000866332 041__ $$aEnglish
000866332 082__ $$a670
000866332 1001_ $$0P:(DE-HGF)0$$aBolelli, Giovanni$$b0$$eCorresponding author
000866332 245__ $$aPerformance of wear resistant MCrAlY coatings with oxide dispersion strengthening
000866332 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000866332 3367_ $$2DRIVER$$aarticle
000866332 3367_ $$2DataCite$$aOutput Types/Journal article
000866332 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1579867055_19357
000866332 3367_ $$2BibTeX$$aARTICLE
000866332 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866332 3367_ $$00$$2EndNote$$aJournal Article
000866332 520__ $$aAiming to devise suitable materials for sliding wear protection at high temperature, aluminium oxide-dispersion strengthened (ODS) CoNiCrAlY coatings were manufactured by vacuum plasma spraying (VPS). Feedstock materials were ball-milled powders with 2, 10 and 30 wt% Al2O3 content. The ball-on-disc sliding wear behaviour of the coatings was tested at 750 °C against an Al2O3 counterpart, and compared to a pure CoNiCrAlY coating (obtained from a commercial feedstock not subjected to ball milling) and to an uncoated Ni-base superalloy.Sliding wear rates decrease from the uncoated superalloy (≈3 × 10−5 mm3/(N·m)) to the pure CoNiCrAlY coating (≈2 × 10−5 mm3/(N·m)) and to the ODS ones, with the notable exception of the 10 wt% Al2O3-containing sample.Analyses of worn samples indicate that pure CoNiCrAlY is subject to severe adhesive wear, mitigated by the formation of a thick (>1 μm) “glaze” layer via compaction and (probable) sintering of tribo-oxidized debris particles. Addition of Al2O3 particles to the CoNiCrAlY matrix can either enhance or worsen the “glaze” stability. Specifically, a coating strengthened with 30 wt% Al2O3 provides an especially good mechanical support to the “glaze”. This produces beneficial effects resulting in a particularly low wear rate of ≈3 × 10−6 mm3/(N·m).
000866332 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000866332 588__ $$aDataset connected to CrossRef
000866332 7001_ $$0P:(DE-Juel1)171660$$aVorkötter, Christoph$$b1$$ufzj
000866332 7001_ $$0P:(DE-HGF)0$$aLusvarghi, Luca$$b2
000866332 7001_ $$0P:(DE-Juel1)180272$$aMorelli, Stefania$$b3$$ufzj
000866332 7001_ $$0P:(DE-HGF)0$$aTesta, Veronica$$b4
000866332 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b5$$ufzj
000866332 773__ $$0PERI:(DE-600)1501123-9$$a10.1016/j.wear.2019.203116$$gp. 203116 -$$p203116$$tWear$$v444-445$$x0043-1648$$y2020
000866332 8564_ $$uhttps://juser.fz-juelich.de/record/866332/files/Post%20Referee%20Version.pdf$$yPublished on 2019-11-08. Available in OpenAccess from 2021-11-08.
000866332 8564_ $$uhttps://juser.fz-juelich.de/record/866332/files/Post%20Referee%20Version.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-11-08. Available in OpenAccess from 2021-11-08.
000866332 909CO $$ooai:juser.fz-juelich.de:866332$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171660$$aForschungszentrum Jülich$$b1$$kFZJ
000866332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180272$$aForschungszentrum Jülich$$b3$$kFZJ
000866332 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b5$$kFZJ
000866332 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000866332 9141_ $$y2020
000866332 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866332 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866332 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000866332 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866332 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bWEAR : 2017
000866332 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866332 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866332 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866332 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000866332 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000866332 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866332 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866332 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866332 9801_ $$aFullTexts
000866332 980__ $$ajournal
000866332 980__ $$aVDB
000866332 980__ $$aUNRESTRICTED
000866332 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866332 981__ $$aI:(DE-Juel1)IMD-2-20101013