000866338 001__ 866338
000866338 005__ 20240711085627.0
000866338 0247_ $$2doi$$a10.1039/C9TA07697B
000866338 0247_ $$2ISSN$$a2050-7488
000866338 0247_ $$2ISSN$$a2050-7496
000866338 0247_ $$2Handle$$a2128/23354
000866338 0247_ $$2altmetric$$aaltmetric:68923056
000866338 0247_ $$2WOS$$aWOS:000496150500040
000866338 037__ $$aFZJ-2019-05494
000866338 082__ $$a530
000866338 1001_ $$00000-0001-6287-9119$$aCelikbilek, Ozden$$b0$$eCorresponding author
000866338 245__ $$aEnhanced catalytic activity of nanostructured, A-site deficient (La 0.7 Sr 0.3 ) 0.95 (Co 0.2 Fe 0.8 )O 3−δ for SOFC cathodes
000866338 260__ $$aLondon $$bRSC$$c2019
000866338 3367_ $$2DRIVER$$aarticle
000866338 3367_ $$2DataCite$$aOutput Types/Journal article
000866338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573636549_3071
000866338 3367_ $$2BibTeX$$aARTICLE
000866338 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866338 3367_ $$00$$2EndNote$$aJournal Article
000866338 520__ $$aLower operating temperatures (≤650 °C) of solid oxide fuel cells (SOFCs) are sought in order to decrease the system costs and improve material compatibility and durability issues. Here, we report A-site deficient (La0.7Sr0.3)0.95(Co0.2Fe0.8)O3−δ (LSCF) perovskite film as a potential high-performance cathode with microstructural details at the nanometre length scale. This cathode exhibits area specific resistance values of as low as 0.037 and 0.1 Ω cm2 in a symmetrical cell and peak power densities of 1.4 and 1.0 W cm−2 in a Ni/YSZ anode-supported cell at 650 and 600 °C, respectively. These values are among the highest reported data for LSCF-type cathodes. X-ray diffraction and electron microscopy analyses revealed a closely related two-phase perovskite structure for LSCF and a well-dispersed, nanoscale B-site spinel phase (CoFeOx) decorating the LSCF surfaces. Detailed investigations were carried out to correlate the surface to bulk elemental composition changes on the film, the catalytic activity of the spinel phase and the crystal structures of the constituents with the oxygen reduction reaction (ORR) kinetics. The oxygen transport parameters calculated from the electrochemical impedance spectra indicate an increase by one-to-two-orders of magnitude in the oxygen surface-exchange coefficient in comparison to nominally stoichiometric, state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3−δ. Such substantial improvements in the electrode performance were attributed to the catalytically active B-site spinel phase precipitated as a result of the A-site deficiency and to the very high active surface area of the film.
000866338 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000866338 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000866338 588__ $$aDataset connected to CrossRef
000866338 7001_ $$00000-0002-1297-924X$$aThieu, Cam-Anh$$b1
000866338 7001_ $$0P:(DE-HGF)0$$aAgnese, Fabio$$b2
000866338 7001_ $$00000-0001-8406-675X$$aCalì, Eleonora$$b3
000866338 7001_ $$0P:(DE-Juel1)138081$$aLenser, Christian$$b4
000866338 7001_ $$0P:(DE-Juel1)129636$$aMenzler, Norbert H.$$b5
000866338 7001_ $$00000-0002-5310-0633$$aSon, Ji-Won$$b6
000866338 7001_ $$00000-0001-5446-2647$$aSkinner, Stephen J.$$b7
000866338 7001_ $$00000-0003-4884-6200$$aDjurado, Elisabeth$$b8
000866338 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/C9TA07697B$$gVol. 7, no. 43, p. 25102 - 25111$$n43$$p25102 - 25111$$tJournal of materials chemistry / A Materials for energy and sustainability A$$v7$$x2050-7496$$y2019
000866338 8564_ $$uhttps://juser.fz-juelich.de/record/866338/files/c9ta07697b.pdf$$yRestricted
000866338 8564_ $$uhttps://juser.fz-juelich.de/record/866338/files/12072019-submited%20version.pdf$$yPublished on 2019-10-16. Available in OpenAccess from 2020-10-16.
000866338 8564_ $$uhttps://juser.fz-juelich.de/record/866338/files/12072019-submited%20version.pdf?subformat=pdfa$$xpdfa$$yPublished on 2019-10-16. Available in OpenAccess from 2020-10-16.
000866338 8564_ $$uhttps://juser.fz-juelich.de/record/866338/files/c9ta07697b.pdf?subformat=pdfa$$xpdfa$$yRestricted
000866338 909CO $$ooai:juser.fz-juelich.de:866338$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000866338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138081$$aForschungszentrum Jülich$$b4$$kFZJ
000866338 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich$$b5$$kFZJ
000866338 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000866338 9141_ $$y2019
000866338 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866338 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000866338 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000866338 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2017
000866338 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ MATER CHEM A : 2017
000866338 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866338 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866338 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866338 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000866338 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866338 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000866338 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866338 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866338 920__ $$lyes
000866338 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000866338 9801_ $$aFullTexts
000866338 980__ $$ajournal
000866338 980__ $$aVDB
000866338 980__ $$aUNRESTRICTED
000866338 980__ $$aI:(DE-Juel1)IEK-1-20101013
000866338 981__ $$aI:(DE-Juel1)IMD-2-20101013