000866358 001__ 866358
000866358 005__ 20240712100828.0
000866358 0247_ $$2doi$$a10.5194/acp-19-13681-2019
000866358 0247_ $$2ISSN$$a1680-7316
000866358 0247_ $$2ISSN$$a1680-7324
000866358 0247_ $$2Handle$$a2128/23346
000866358 0247_ $$2altmetric$$aaltmetric:70142348
000866358 0247_ $$2WOS$$aWOS:000496725700004
000866358 037__ $$aFZJ-2019-05514
000866358 082__ $$a550
000866358 1001_ $$0P:(DE-HGF)0$$aBraun, Marleen$$b0$$eCorresponding author
000866358 245__ $$aNitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015–2016
000866358 260__ $$aKatlenburg-Lindau$$bEGU$$c2019
000866358 3367_ $$2DRIVER$$aarticle
000866358 3367_ $$2DataCite$$aOutput Types/Journal article
000866358 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1573566974_31498
000866358 3367_ $$2BibTeX$$aARTICLE
000866358 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000866358 3367_ $$00$$2EndNote$$aJournal Article
000866358 520__ $$aThe Arctic winter 2015–2016 was characterized by exceptionally low stratospheric temperatures, favouring the formation of polar stratospheric clouds (PSCs) from mid-December until the end of February down to low stratospheric altitudes. Observations by GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) on HALO (High Altitude and LOng range research aircraft) during the PGS (POLSTRACC–GW-LCYCLE II–SALSA) campaign from December 2015 to March 2016 allow the investigation of the influence of denitrification on the lowermost stratosphere (LMS) with a high spatial resolution. Two-dimensional vertical cross sections of nitric acid (HNO3) along the flight track and tracer–tracer correlations derived from the GLORIA observations document detailed pictures of wide-spread nitrification of the Arctic LMS during the course of an entire winter. GLORIA observations show large-scale structures and local fine structures with enhanced absolute HNO3 volume mixing ratios reaching up to 11 ppbv at altitudes of 13 km in January and nitrified filaments persisting until the middle of March. Narrow coherent structures tilted with altitude of enhanced HNO3, observed in mid-January, are interpreted as regions recently nitrified by sublimating HNO3-containing particles. Overall, extensive nitrification of the LMS between 5.0 and 7.0 ppbv at potential temperature levels between 350 and 380 K is estimated. The GLORIA observations are compared with CLaMS (Chemical Lagrangian Model of the Stratosphere) simulations. The fundamental structures observed by GLORIA are well reproduced, but differences in the fine structures are diagnosed. Further, CLaMS predominantly underestimates the spatial extent of HNO3 maxima derived from the GLORIA observations as well as the overall nitrification of the LMS. Sensitivity simulations with CLaMS including (i) enhanced sedimentation rates in case of ice supersaturation (to resemble ice nucleation on nitric acid trihydrate (NAT)), (ii) a global temperature offset, (iii) modified growth rates (to resemble aspherical particles with larger surfaces) and (iv) temperature fluctuations (to resemble the impact of small-scale mountain waves) slightly improved the agreement with the GLORIA observations of individual flights. However, no parameter could be isolated which resulted in a general improvement for all flights. Still, the sensitivity simulations suggest that details of particle microphysics play a significant role for simulated LMS nitrification in January, while air subsidence, transport and mixing become increasingly important for the simulated HNO3 distributions towards the end of the winter.
000866358 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000866358 588__ $$aDataset connected to CrossRef
000866358 7001_ $$0P:(DE-Juel1)129122$$aGrooß, Jens-Uwe$$b1
000866358 7001_ $$0P:(DE-HGF)0$$aWoiwode, Wolfgang$$b2
000866358 7001_ $$00000-0002-9642-1955$$aJohansson, Sören$$b3
000866358 7001_ $$00000-0002-4174-9531$$aHöpfner, Michael$$b4
000866358 7001_ $$00000-0003-2016-2800$$aFriedl-Vallon, Felix$$b5
000866358 7001_ $$0P:(DE-HGF)0$$aOelhaf, Hermann$$b6
000866358 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b7
000866358 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b8$$ufzj
000866358 7001_ $$00000-0001-9608-7320$$aSinnhuber, Björn-Martin$$b9
000866358 7001_ $$00000-0001-5483-5669$$aZiereis, Helmut$$b10
000866358 7001_ $$0P:(DE-HGF)0$$aBraesicke, Peter$$b11
000866358 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-19-13681-2019$$gVol. 19, no. 21, p. 13681 - 13699$$n21$$p13681 - 13699$$tAtmospheric chemistry and physics$$v19$$x1680-7324$$y2019
000866358 8564_ $$uhttps://juser.fz-juelich.de/record/866358/files/acp-19-13681-2019.pdf$$yOpenAccess
000866358 8564_ $$uhttps://juser.fz-juelich.de/record/866358/files/acp-19-13681-2019.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000866358 909CO $$ooai:juser.fz-juelich.de:866358$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000866358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129122$$aForschungszentrum Jülich$$b1$$kFZJ
000866358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b7$$kFZJ
000866358 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b8$$kFZJ
000866358 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000866358 9141_ $$y2019
000866358 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000866358 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000866358 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000866358 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2017
000866358 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000866358 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000866358 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000866358 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000866358 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000866358 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000866358 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review
000866358 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2017
000866358 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000866358 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000866358 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List
000866358 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000866358 9801_ $$aFullTexts
000866358 980__ $$ajournal
000866358 980__ $$aVDB
000866358 980__ $$aUNRESTRICTED
000866358 980__ $$aI:(DE-Juel1)IEK-7-20101013
000866358 981__ $$aI:(DE-Juel1)ICE-4-20101013